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Résumé

Résumé Cette thèse concerne la “représentation exécutable du savoir”dans le domaine de la
biologie moléculaire. Elle introduit les fondements d’un cadre logique appelé iota, dont le but
est de décrire et rassembler des faits au sujet d’interactions entre protéines tout en offrant au
modeleur la possibilité de “compiler” un fragment raisonnable de la logique vers un ensemble
fini de règles de réécriture.

On définit une logique FO[↓] qui décrit des transitions d’états cellulaires. Un état représente
le contenu d’une cellule : les éléments du domaine sont des parties de protéines et les relations
sont des liaisons entre protéines. L’opérateur logique unaire ↓ sélectionne les transitions où un
ensemble minimal de changements a lieu. Les formules qui parlent de transitions dénotent aussi
des exécutions, c’est-à-dire des séquences finies ou infinies de transitions. Chaque formule de
transition est de plus associée à un ensemble de règles de réécritures équipé d’une sémantique
opérationnelle. On introduit deux système déductifs qui permettent de “typer” les formules.
On montre que si une formule est typable dans le 1er système, alors l’exécution des règles
de réécriture qui lui sont associées produit exactement les exécutions dénotées par la formule
; et que si elle est typable dans le 2nd système, alors son système de règles associé est fini.
On introduit une grammaire qui produit des formules typables dans les deux systèmes (à
équivalence logique près). Enfin, on étudie la décidabilité et l’expressivité de fragments de FO[↓].
On montre en particulier que les formules typables dans le second système sont définissables
dans un petit fragment de FO, ce qui implique que l’opérateur ↓ peut alors être éliminé.

Mots-clefs Raisonnement non-monotone, representation des connaissances, modélisation basée
sur les règles de réécriture, biologie moléculaire, logique du 2nd ordre, circonscription

Abstract

This thesis addresses the issue of “Executable Knowledge Representation” in the context of
molecular biology. We introduce the foundation of a logical framework, termed iota, whose
aim is to facilitate knowledge collation of molecular interactions at the level of proteins and at
the same time allows the modeler to “compile” a reasonable fragment of the logic into a finite
set of executable graph rewriting rules.

We define a logic FO[↓] over cell state transitions. States represent cell contents; domain
elements are protein parts and relations are protein-protein bindings. The unary logical operator
↓ selects transitions where as little as possible happens. Formulas over transitions also denote
runs, which are finite or infinite sequences of transitions. Every transition formula is moreover
associated to a set of rewriting rules equipped with an operational semantics. We introduce two
deductive systems that act as “typing” for formulas. We show that if a formula is typable in
the first system then the execution of its associated rule set produces exactly the runs denoted
by the formula, and that if it is typable in the second system then its associated rule set is
finite. We introduce a grammar that produces formulas typable in both systems, up to logical
equivalence. Finally we study decidability and definability properties of fragments of FO[↓]. In
particular, we show that formulas typable in the second system are in a tight fragment of FO,
which implies that the operator ↓ can then be eliminated.

Keywords non-monotonic reasoning, knowledge representation, rule-based modelling, molec-
ular biology, second-order logic, circumscription
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1. Introduction

1.1. Biological modeling

Biological systems involve many components that interact non-linearly. These components can
be molecules, cells, genes, etc. The level of complexity of many of these systems precludes a
full mental grasp over all their possible behaviors.

For the past several decades, the field of systems biology has developed mathematical models
that have become an important tool for biological research. These models explicitly describe the
behaviors and interactions of biological systems; they can then be interpreted by a computer for
testing and prediction purposes.

We start with a very simple example designed to motivate biological modelling in general.

A boolean network example We introduce biological modeling with a simple type of model: a
boolean network. A boolean network can represent how proteins influence one another through
their activity. The toy model in figure 1.1 shows three protein types: A, B and C, as well as their
influence on one another’s activity. The activity of a protein is summarised as “active” and
“inactive”. If a protein or a pair of proteins is active, it can turn on or turn off the activity of
another protein. The green arrows in figure 1.1 represent activation (positive influence), and the
red, flat arrows represent inhibition (negative influence). A double arrow requires both sources
to (de)activate. For instance, A alone has a negative influence on B, but A and B together have a
positive influence on C. Double arrows have priority over single arrows.

At any moment in time, each of A, B and C can be active or inactive (but we assume that it is
not possible for all 3 to be inactive at the same time). That can be summarised by 3 letters ABC.
If a letter is green, the corresponding protein is active. Otherwise it is inative. For instance, ABC
means that only A and C are active. Each possible triple of green or black letters is called a state.

Using the individual and pair influences on figure 1.1, we can generate a trace from any
starting state. That means starting with any activation values for A, B and C, and then iteratively

Figure 1.1.: Activity influences between A,B and C. A joint influence has priority.

1



1. Introduction

Figure 1.2.: Generating traces

Figure 1.3.: The resulting network. A green letter is active.

updating those values according to the influence map of figure 1.1.
For instance, figure 1.2 shows a sample trace. The trace starts in state ABC, which means

that A is inactive and both B and C are active. Because C has a positive influence on A (cf. the
green arrow from C to A in the influence map of figure 1.1), that state can evolve to ABC. Then,
because A and B together have a negative influence on C (cf. the double, flat red arrow from
(A,B) to C in the influence map), the state can evolve to ABC, and so on.

If we generate many such traces, we will find out that the states ABC, ABC and ABC are not
seen very often. In fact, unless we start in one of these states, we never see them at all!

To better understand the situation, we draw a map of all the states and of how traces can
move from each one to the others. The resulting diagram is shown in figure 1.3. Each state has
A,B,C active or inactive, and arrows are possible moves by the trace-generation process. For
instance, there is a (leftward) arrow from ABC to ABC because A and C together have a positive
influence on B.

If we look at the diagram carefully, we notice an attractor region (yellow rectangle). On any
trace, the system will go to and stay among the attractor’s states: since there is no arrow coming
out of the yellow region, it is impossible to leave it.

That last observation illustrate the essence of biological modeling: going from a set of
individual facts (the joint influences of fig. 1.1) to an insight on the global dynamics (the
attractor region of fig. 1.3) through the manipulation and analysis of a mathematical object.

In this thesis, we will be concerned with the earliest part of the modelling process: how to
describe the individual facts and collate them together. We also won’t be working on boolean
networks but on different formal objects, which follow the paradigm of rule-based modelling
[Boutillier et al., 2018, Chylek et al., 2014, Danos et al., 2007].

1.2. Rule-based models

The purpose of the previous section was to show the biological modelling process, from
observations to a formal model to analysis of the model and what that may imply about the
real world. We now introduce another biological modelling formalism: rule-based models. They
will be the starting point of the objects we construct in this thesis.

Boolean networks are typically about modelling gene expression. They are not mechanistic,
in the sense that they model statistical interactions at a rather large scale. There is an important,
more mechanistic level of abstraction: protein-protein interactions, as described by molecular

2



1.2. Rule-based models

biology.
To illustrate the type of knowledge we are aiming at, here is a typical sentence from a

molecular biology paper:

“The activation of Raf-1 by activated Src requires phosphorylation of Raf-1 on Y340 and/or
Y341 [...]. Tyrosine phosphorylation and activation of Raf-1 have been shown to be co-
incident. However, others have been unable to detect phosphotyrosine in active Raf-1.”.
[Mason et al., 1999]

At this level of abstraction, proteins are considered as chains of amino acid residues such
as Y340 and Y341, which are identified by their type (Y for tYrosine) and their position in the
chain (resp. 340 and 341). Proteins have names, here Raf-1 and Src, and are usually divided
into domains or regions that are covering sub-sequences of amino acids. Domains may also be
given a name. For instance, Raf-1 has a “Zinc finger” domain in the 137-183 region.1

Importantly, static names of proteins, domains and residues can be completed with dynamic
attributes. Here, “phosphorylation” denotes the attachment of a phosphate group to a protein
residue, which tends to modify the protein structure. One then talks about a phosphorylated
protein, a phosphorylated domain or, as in the example above, a phosphorylated residue. Other
dynamic attributes such as “active” are commonplace in molecular biology.

Underlying the snippet of biological literature given above is the notion of protein interactions:
“the activation of Raf-1” by “activated Src” indicates that Raf-1 and active Src can bind to each
other so that phosphorylation of Raf-1 by Src may occur. Stable binding of proteins requires
complementary domains that stick together with various affinities. The binding state of a
protein (or a region) is therefore also a dynamic, relational property.

Over time, the field of molecular biology accumulates data and mechanisms suspected to play
key roles in the cellular ecosystem. The activity of discovery currently outpaces human abilities
to follow and collate new mechanisms [Lazebnik, 2002]. For instance, p53 is a protein family
relevant to cell apoptosis and cancer formation. In 2018 alone, it was mentioned in the title or
abstract of about 4700 papers (PubMed). The need for principled representations of biological
systems has led to the development of formal methods for biology [Fontana and Buss, 1996].

The field of rule-based modelling is well-suited to formally modelling mechanistic biological
interactions at that lower level of abstraction. Protein-protein interactions are directly described,
and gene expression is a global observation on the model’s behavior. Rule-based models attempt
to collate a large number of known interactions in a single structure: a list of rewrite rules.

Mixtures A rule-based model is a list of rules that describe allowed interactions between
proteins – think of chemical reactions, but with proteins and protein parts instead of individual
atoms. The interactions take place in a mixture, a graph which represents the contents of a cell
or of a test tube.

Figure 1.4 presents a possible mixture: it contains several agents of two types: K for Kinase,
E for general enzyme (a kinase is a particular kind of enzyme which helps bind phosphate
groups to other proteins). Each agent represents a protein. Some agents have been given names
so they can be individually identified: there is an agent a (of type K) and an agent b (of type
E). Some agents have sites (s, t): each site represents the ability of its protein to interact with
another protein. Sites can change in two ways :

1uniprot.org/uniprot/P09560
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1. Introduction

Figure 1.4.: A mixture

M1 M2 M3

Figure 1.5.: A sequence of mixtures, changes highlighted in green

• The label of a site may change. In figure 1.4, some sites are ON, others not. Labels represent
any dynamic aspect of a protein: its state of phosphorylation (that is, whether a phosphate
group is attached to part of the protein), its folding conformation, etc.

• The linkage of a site may change. If two proteins are linked, they are interacting. As with
labels, linkage is dynamic: it may change over time. In the mixture presented in figure
1.4, a and b are linked.

In figure 1.5, we see the sequence of mixtures M1, M2 and M3. They can be seen as three
snapshots of a mixture as it evolves in time:

• in M1, agent a’s site s (written a.s) is OFF. a.s and b.s are not linked;

• in M2, a.s is ON. a.s and b.s are stil not linked.

• in M3, b.s and a.s are linked.

Rules Driving the evolution of a mixture are the rules mentioned earlier. A rule allows a
possible change. In figure 1.6, we see the rule2 R1. It allows the site s of any Kinase to
spontaneously turn ON when it is not linked to anyone.

If an instance of a rule is found in a mixture, that mixture can evolve.
Figure 1.8 shows how to find instances of rules: A match for R1 is found by identifying a part

of M1 “similar enough”3 to the left-hand side of R1 (cf. red arrow, figure 1.8). Then, the changes
2In figures, rules are represented with a dashed central triangle in the center, to differentiate from the mere succession

of mixtures separated by a grey triangle.
3A match is a particular kind of morphism.
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1.2. Rule-based models

Figure 1.6.: The rule R1 Figure 1.7.: The rule R2

Figure 1.8.: A match from R1 into M1

in R1 (i.e. going from OFF to ON) are applied to M1 along the match arrow. This constructs the
mixture M2 (top right).

In R1, notice the word free attached to s: it means that for the change to occur, the match
image of s in M1 should not be linked to anyone. The word free only appears in rules, not in
mixtures, because it is not a property of the graph itself. Instead it is a application condition
restricting where the rule can be applied.

Figure 1.7 shows the rule R2, where any two agents can become linked as long as one has an
ON site s and that both s sites are free. Following the example of figure 1.8, consider how the
rule R2 could be applied to M2 in order to construct M3.

Given a set of rules and an initial mixture one can generate a trace by repeating the above
operation and at every step nondeterministically choosing one match among the possible ones.
Figure 1.5 is actually an example such a sequence, starting from mixture M1. It uses the rules
R1 and R2 shown in figures 1.6 and 1.7.

Problems with rule-based models Rule-based models suffer from two problems that arise as
modelling scales up. The first is that models become themselves too large understand. In
particular if multiple groups collaborate, it becomes harder to write rules consistent with every
other observation, encoding choice and biological invariant of the model. Since model building
rests on current biological data, it should be possible to query the existing system; to maintain
a coherent model, it is useful to answer queries such as “Is this rule subsumed by a preexisting

5



1. Introduction

Figure 1.9.: R1 becomes R ′1

one?” or “Is that biological invariant ensured by the current model?”. In the next paragraph
we introduce a logic-based description of biological knowledge. In such a framework, natural
language queries of that type can be encoded as boolean or n-ary logical queries.

A second, related issue is that knowledge should be added incrementally as much as possible.
Under the rule-based paradigm, it is hard to add new knowledge to an existing set of rules.
Sometimes that knowledge is about a new & previously unknown reaction. Then it suffices to
create a new rule. But sometimes incorporating the new knowledge means modifying existing
rules. Take the rule R1 in figure 1.6, which lets a Kinase go from OFF to ON. Suppose that
the following information comes in: A Kinase turns ON only when the label of its t site is OPEN.
We would like that information to exist as a discrete piece of knowledge. But the only way to
incorporate it is to edit every single rule where a kinase goes from OFF to ON, as in figure 1.9,
where R1 is edited into R ′1.

Knowledge representation When one wishes to formally represent information, turning to
logic is usually a sensible move. Here is a logic formula; we call if F0. The x in parenthesis
means that it depends on an argument named x. The symbol means “is defined to be”, and
∧ means “and”:

F0(x) OFF(x.s)∧ ON?(x.s)

F0(x) means : The s site of agent x turns ON.

• OFF(x.s) means that the site s of x is currently OFF.

• ON?(x.s) means that in the next mixture, the site s of x will be ON.

Note the presence of a star after the word ON. The star is for things that are susceptible to
change (labels and links). No star means we are talking about the current mixture, while a star
means we are talking about the next mixture.

Compare the formula F0 to the rule R1 in figure 1.6. Informally, note how they are partially
similar: in both cases, some agent’s site s goes form OFF to ON. For the rule R1 the switch is
represented by a pair of graph. For the formula F0, the switch is encoded by two statements
taken in conjunction.

We can refine F0 into another formula, F1, so that it corresponds more closely to our intuitive
understanding of the rule R1:

F1 F0 ∧K(x)∧ free(x.s)

• K(x) means “x is a Kinase”. Names such as Kinase and Enzyme cannot change, so there is
no need to also write K?(x).

• free(x.s) is another formula. It specifies that the site s of x should not be linked to anyone
in the current mixture (there exists a formula free? for the next mixture).

6



1.2. Rule-based models

Figure 1.10.: The transition 〈M1,M2〉

The meaning of a formula depends on how we interpret its variables. F0(a) means that a is
turning ON. F0(b) means that b is turning ON.

With all its variables interpreted, a formula may or may not be satisfied by a pair of mixtures.
A pair of mixtures can be represented by a transition. One mixture is the current one, while the
other is the next. For instance, 〈M1,M2〉 is the transition where M1 is the current mixture, and
M2 is the next one (see figure 1.10)4. In 〈M1,M2〉, F1(a) is satisfied because a is a Kinase, a.s
does turn ON between M1 and M2, and s is not linked to anyone. F1(b) is not satisfied because
b does not even have a site s.

One advantage of using logic formulas is that it is easier to incorporate new knowledge.
Recall the scenario where a new piece of information comes in: A Kinase’s s site may only turn
ON when its t site is OPEN. Let us write a formula G that says exactly this:

G ∀x. (K(x)∧ OFF(x.s)∧ ON?(x.s))→ OPEN(x.t)

• The universal quantifier ∀x. means that what follows it should be true for all interpretations
of x, and the arrow → means “implies”.

• As earlier, K(x) means that x has the static name K, OFF is about the current state, and
ON? is about the next mixture.

• The formula requires all Kinases in the transition with an s site that turns ON to also have
a t site OPEN in the current mixture.

In the previous section, the only way to incorporate that new knowledge was to edit R1 into
R ′1, as in figure 1.9. Now G is an independent unit of knowledge, and it suffices to write F1 ∧G.

Traces As we saw earlier, rules can be executed. So far there is no notion of execution associated
with formulas. Formulas have semantics and we may reason with them but we cannot generate
traces with them.

Consider what it would mean for a trace to satisfy (or not) a formula. We wrote the formula
F1 to correspond to the rule R1. We will also write F2(x,y) to correspond to the rule R2:

F2(x,y) free(x.s)∧ free(y.t)∧ ON(y.s)∧ Link?(x.s,y.t)

• The formula F2 depends on two variables, x and y.

• free(x.s) stands for “nothing is connected to x.s”. Same for y.t.

4In figures we use a dark grey triangle for transitions. It helps distinguishing them from rules (dashed triangle) and
sequences of mixtures (light grey triangle).
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Figure 1.11.: The transition from M1 to M2 satisfies F1(a), and therefore F

Figure 1.12.: The transition from M2 to M3 satisfies F2(b,a), and therefore F

• Link?(x.s,y.t) stands for “x.s and y.t are connected in the next mixture”.

The formula F allows both F1 and F2 (∨ means “or”):

F(x,y) F1(x)∨ F2(x,y)

Consider again the sequence M1,M2,M3 shown in figure 1.5 on page 4. The sequence
M1,M2,M3 is correct for the rules R1 and R2 because each step corresponds to the appli-
cation of a rule among {R1,R2}. We will say that M1,M2,M3 is correct for F if every successive
pair of mixtures in it satisfies F.

This is illustrated in figures 1.11 and 1.12. Picture a “sliding window” wide enough for
2 mixtures, sliding over the sequence. The pair of mixtures visible under the window is a
transition, and either that transition can satisfy F or it cannot. If a visible transition can satisfy F
no matter where the window is, then the entire sequence is correct for F.

Change minimisation With the rule-based approach, a trace is generated by successively choos-
ing which rules to apply where in each successive state. For a formula, the definition we have so
far is that every successive pair of states should satisfy the formula. This is not a strict enough
requirement.

Recall the formula F0 = OFF(x.s)∧ ON?(x.s). Consider the transition 〈M1,Mbad〉, shown
figure 1.13. In this transition, not only does a.s turn ON, but the Enzyme above a disappears
(the faint red Enzyme on the right is here to signal that it is missing) and the Kinase above a
and b becomes connected to b (and disconnects its previous link).

The transition 〈M1,Mbad〉 satisfies F0(a). Logically that is fine, but we want to stay as close
the way rule-based trace generation works as possible. Since 〈M1,Mbad〉 contains superfluous
changes, we want to forbid it from appearing in a sequence.
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Figure 1.13.: The transition 〈M1,Mbad〉 satisfies F0(a)

Compare 〈M1,M2〉 on figure 1.10 (p. 7) with 〈M1,Mbad〉 on figure 1.13. They start from the
same mixture M1. The difference is that 〈M1,Mbad〉 does strictly more than 〈M1,M2〉 even
though 〈M1,M2〉 already satisfies F0(a).

To fix the issue, we will define a change order on transitions. From a same starting mixture,
transitions that “do more” will be above transitions that “do less”. Then we will introduce a
new logical operator, ↓. With that operator, the formula ↓F0 will only be satisfied by transitions
that satisfy F0 with as few changes as possible. So 〈M1,M2〉 will satisfy (↓F0)(a), but 〈M1,Mbad〉
will not.

To faithfully reproduce the behavior of rules R1 and R2, the following formula can replace F:

F ′ (↓F1)(x)∨ (↓F2)(x,y)

Goals Given a formula φ that may use ↓ and a starting mixture, we are interested in generating
all the correct traces for φ, and only those. Recall the rule-based trace generation process: we
start from an initial mixture, find a way to match a rule to the mixture, and create a new mixture
from the match. By doing it again and again, we generate a trace. Is there a process where,
given a formula φ and an initial mixture, we can generate a sequence of new mixtures that
together form a correct sequence? Can this process be complete with regards to the set of all
correct sequences?

This thesis describes conditions where the answer is positive. More precisely, it starts by
rephrasing the question as: Is it possible to transform a formula into a finite set of rules such that the
sequences generated by the rules are exactly those that are correct for the formula? The rephrasing is
particularly relevant because there are existing simulation engines that can take as a input a
finite set of rules and efficiently output traces [Boutillier et al., 2018, Chylek et al., 2014] (they
run actual simulations in the sense that their trace generation process is parameterised by
stochastic rates instead of being nondeterministic). We would like to make use of them. In the
next section, we provide an overview of the content of this thesis.

1.3. Plan & Contributions

The thesis is organised as follows: we start by defining transitions, rewrite rules, and how to
execute those rules. Then we define a logic for specifying transitions: first-order logic with an
operator (↓) to minimise changes. We introduce a theory of transitions, a denotational notion of
execution (runs), and a canonical mapping from formulas to rules.

A first set of “typing rules”, ρ̀, produces formulas that can be mapped to rules such that the
execution of those rules generates exactly the traces denoted by the formulas.

9



1. Introduction

A second set of typing rules, C̀, produces formulas that can be mapped to a finite set
of rules. As a result, formulas produced by both ρ̀ and C̀ can in principle be executed by
existing efficient graph rewriting engines [Boutillier et al., 2017] modulo a reasonable theory.
We provide a program syntax which always corresponds to ρ̀, C̀-provable formulas.

The last part deals with decidability and definability issues: we provide a decidable fragment
for the theory of transitions, and show when the change-minimisation operator ↓ can be
eliminated.

The contents of chapters 4, 6 and 7, minus full proofs, are in [Husson and Krivine, 2019].
The main contributions of this thesis are a) the framework for expressing graph rewriting
rules as minimised formulas b) the ρ̀ deduction rules which produce formulas with infinitarily
operational trace semantics, c) the C̀ deduction rules which, together with C̀ produce formulas
with finitarily operational run semantics, and d) the proof that ρ̀-provable formulas are in two
very tight fragments of first-order logic, ∃∗∀∗ and ∀∗∃∗.

Plan in more detail:

Structures & Runs In chapter 2 we introduce states, a class of structures, as well as transitions
between states. Transitions can be summarised by patterns and by rules. Given a starting state,
we describe a) an operational notion of rule-based nondeterministic execution that associates a
set of executions to every rule set and b) a denotational notion that associates a set of runs to
every transition set. The rule-based execution method essentially transports the description
of rule-based rewriting of Kappa from [Danos et al., 2012] to signatures and structures. Both
runs and executions are sequences of transitions, but we use a different name for each method
of generation. We then show conditions when the operational and the denotational notion
coincide.

Formulas & Minimisation In chapter 3 we describe a logic on transitions. We define the
semantics of formulas, both as a set of transitions and as a set of runs from initial states. We
also introduce the semantics of the minimisation operator ↓, based on a notion of change order
between transitions. Except where otherwise noted, the rest of the thesis is in FO[↓]. Now that
formulas have a sensible notion of execution, we turn to the correspondence between rule sets
and formulas.

From formulas to rules Chapter 3 describes conditions when the execution semantics and the
run semantics of formulas are the same. We introduce a first “type system” for formulas, ρ̀. We
show that for ρ̀-provable formulas, there is a set of rules such that, for a class of initial states,
their execution produces exactly the runs denoted by the formula.

Bounded changes The rule sets that correspond to ρ̀-provable formulas can be infinite. Morally,
the reason is that even after change minimisation the semantics of a formula does not bound
the amount of change that can occur during a transition. In chapter 4 we study changes
in transitions under a tighter theory, that of n-bounded linked forests, which characterises
transitions between forests of bounded-height trees with functional links between tree vertices.
We introduce a second “type system” for formulas, C̀, such that change-minimal models of
C̀-provable formulas are bounded in their amount of change.

Compilation: from logic program to rules In chapter 5 we ask when a formula can effectively
be compiled to a finite set of rules. Combining the previous chapters, we find that one answer is:
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when the formula is both ρ̀ and C̀-provable. We introduce a syntax for “programs” that compile
to formulas such that any syntatically valid program compiles to a ρ̀, C̀-provable formula. More
than a toy syntax, programs show admissible rules for C̀ and ρ̀ which demonstrates the rich
syntax available for building compilable formulas.

Decidability In chapter 6 we consider decidability questions. We show that the FO theory of
n-bounded-height linked forest does not have decidable satisfiability, but that its ∃∗∀∗ fragment
does.

Change minimality in FO In chapter 7, we introduce unified circumscription. Circumscription
dates back to the early 1980s and is a way to characterise the minimal models of formulas
along some order, using 2nd-order quantification. We show that the version we dub unified
circumscription can express minimality along the change order defined in chapter 3. We then
show when the minimality operator ↓ can be eliminated (thus going from FO[↓] to FO). We
further show that, modulo the theory of n-bounded-height linked forests, C̀-provable formulas
are in the in the ∃∗∀∗ and ∀∗∃∗ fragments of FO.
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2. Runs and executions for transition
structures

The first chapter introduces the main notions used throughout the thesis. In section 2.1 we
introduce general notations and notions. Then in section 2.2 we define states and transitions, the
basic structures we use in the rest of this thesis and important notions related to them: distance,
0-embeddings, state joining. In section 2.3 we define rules and pushouts, an operational
notion of trace generation (executions). Then section 2.4 gives a more denotational version
of trace generation with patterns and matches (runs). Section 2.5 shows when the previous
two approaches coincide for one step of trace generation. Finally, section 2.6 shows when they
coincide on entire traces.

In more detail, this chapter defines states, which represent a snapshot of a biological mixture,
and transitions between those states. A state is a set of elements connected in two ways. First,
through static functions. They represent the unchanging, rigid structure of a molecule. Second,
through dynamic links. Those typically represent temporary interactions between molecules;
they are subject to change. In addition, unary properties also exist, both in static and dynamic
versions. A transition therefore contains only one version of the static information, and two
versions of the dynamic information: one for the state “before” the transition, and the other for
“after”.

Both states and transitions can be generalised to patterns: as in rule-based rewriting, a “small”
transition can be found in a bigger one. This is called a match. A match from a transition
to another starts with a structure embedding, but application conditions determine when the
embedding is a proper match. This supplementary information is found in a pattern.

One can give states and transitions a notion of execution. First, given a rule r (a variation
on the notion of pattern) and a state M, one may sometimes construct a pushout, which is
morally a “next state” representing the result of applying r to a specific part of M. In the case
of rule-based graph rewriting, this operation was shown figure 1.8 (p.5), where a rule was a pair
of graphs equipped with application conditions. From now on, rules will be objects derived
from states. This one-step operation can be iterated by repeated application of rules in a set to
the most recent “next state”, generating an execution.

A more semantic notion is that of pattern instance. Instead of being constructed from some
“current state” M, an instance of r is any transition in which r could match. A sequence of such
instances can form a run – the denotational counterpart to the operational notion of execution.

Given a set of patterns, one can derive a corresponding set of rules. The main result of this
chapter gives sufficient conditions for the runs of a set of patterns to be equal to the executions
of their derived rules.

A note on figures: in the sequel, figures representing structures use arrows with thick heads for the
interpretation of functions and curves for binary relations; in all examples, those relations are symmetric.
If a function arrow or a relation curve has no name, then the name is either obvious or unimportant. If a
function arrow is not shown on some point, it is the identity there. Names such as a,b, c are for domain
elements. If for instance a has a subscript A, it means that a is in the interpretation of A.
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2.1. Generalities

In this section we describe various notations and we define the basic model theory concepts
used throughout this thesis.

The marker Notation (as opposed to Definition) introduces notations for objects whose
definition is outside the scope of the document, or syntactic sugar for already defined objects.
The marker Implicit parameter introduces objects in the context of the document. They are
then implicitly universally quantified.

Notation (Tuples). If some symbols (a, x, t, . . .) are used to denote a certain kind of objects (vari-
ables, nonlogical constants, etc), bold symbols denote tuples of objects of that kind (a, x, t, . . .).
Set-like notations apply to tuples; for instance (a,b) ⊆ (a, x,b, c) and x ∈ (y, x). �

Implicit parameter The universe U is some recursive, infinite set; the domain of a structure is
always a subset of U. An element always refers to an element of U.

Basic definitions A signature Σ is a tuple of symbols. Each symbol S ∈ Σ is equipped with a
nature (relational or functional) and an arity arity(S) > 0.

A Σ-structure A (written A : Σ) is a domain dom(A) ⊆ U together with an interpretation for
every symbol of Σ, that is: a k-ary relation on dom(A) (resp. k-arguments function on dom(A))
JSKA for every k-ary relation symbol (resp. function symbol) S ∈ Σ. If Σ ′ ⊆ Σ, JΣ ′KA is the
tuple of interpretations of Σ ′-symbols in A. The Σ ′-reduct of A is the Σ ′-structure with domain
dom(A) and interpretations JΣ ′KA.

If B : Σ, m : dom(A)→ dom(B) is injective, and m(JSKA(a)) = JSKB(m(a)) (resp. a ∈ JSKA iff
m(a) ∈ JSKB) for every function symbol (resp. relation symbol) S ∈ Σ and tuple a from dom(A)

of size arity(S), then m is an embedding from A to B (written m : A→ B).
If idA : A→ B, then A is a substructure of B. If K ⊆ U, the substructure of A induced by K

(written A � K) is the uniquely defined substructure of A with ⊆-minimal domain still containing
K∩ dom(A).

If Σ ′ ⊆ Σ and K ⊆ U, JΣ ′KA � K JΣ ′KA ′�K where A ′ is the reduct of A to Σ ′.

2.2. States and transitions

In this section we describe states and transitions, which are classes of structures, as well as
changes. We then introduce 3 notions: a pseudodistance δ on structure elements that identifies
functionally accessible elements, a join operation for states (when they are similar enough) that
produces transitions, and a stricter notion of structure embeddings that respects the identities
produced by the pseudodistance δ.

States are the mixtures from the introduction. Transitions represent going from one state to
another in a single step. First, we describe the class of state and transitions signatures:

Definition (State and transition signature). If

• Dyn is a tuple of relational symbols such that |Dyn| > 2 and

– One distinguished symbol, Link, is binary.

– Another distinguished symbol, Has, is unary.

– All other symbols are unary.
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• Dyn? is Dyn with a star? appended to each symbol,

• Stat is a tuple of unary symbols, relational or functional,

then Θ (Dyn,Dyn?,Stat) is a transition signature and Θ◦ (Dyn,Stat) is its corresponding
state signature. �

Connection with rule-based models We explain the connection with the rule-based models
from the introduction. Recall mixtures and transitions from the introduction: some names were
static, such as K (for Kinase). A static name would be a unary predicate symbol in Stat. Other
names were dynamic, such as ON. That name would be in Dyn. Its counterpart for the next
mixture, ON?, would be in Dyn?. An agent in a mixture would be an element, say a. Its site
would be another element, and the name of the site would be the name of a function s ∈ Stat.
So a.s refers to the image of a by the interpretation of s.

So an interpretation for Stat represents the unchanging part of a structure, while there are
two copies of Dyn. The interpretation of Dyn holds the precondition; the interpretation of Dyn?

holds the postcondition. In a biological setting, the static information in the interpretation of Stat
represents proteins names, internal protein structure, etc. The intepretations of Dyn and Dyn?

hold the dynamical properties: phosphorylation state, folding, link to another protein, etc.

Has and Link We motivate the distinguished predicate and relation symbols Has, Has?, Link
and Link?. The distinguished binary Link symbol is for protein-protein interactions. There is no
technical issue with adding more relational symbols, but we have just one to keep things simple.
Moreover, we single out the unary Has to encode presence: in a logical specification (see later),
we would like to say e.g. Has(x)∧¬Has?(x) to ensure the destruction of x during a transition.
Notation. If Θ is a transition signature and A : Θ, then A is a transition. If M : Θ◦, then M is
a state. The names A,B,C and variations are reserved for transitions. The names M,S and
variations are reserved for states (M for “mixture” and S for “state”). �

Definition (Function symbols of Stat). The tuple Statfun ⊆ Stat contains exactly the functional
symbols of Stat. �

Notation. Symbols in Dyn and Dyn? are said to be dynamic; symbols in Stat are said to be
static. In the sequel, the possible fonts are:

• Sans-serif for dynamic symbols.

• Regular for static symbols state/transition signature.

• Italic for formula names (see chapter 3).

• Math for other symbols

In any state or transition signature, any symbol A ∈ Dyn has its counterpart A? ∈ Dyn? of
same nature and same arity. �

Changes We introduce changes to capture the difference between the pre- and postconditions.
The notation prefigures the use of semantic brackets for formulas.
Definition (Changes). If A : Θ, for every A ∈ Dyn let J∆AKA JAKA∆JA?KA, where ∆ is the
symmetric difference. �

Definition (Transition changes). If A : Θ, let J∆KA be the union of the carrier sets of J∆AKA for
all A ∈ Dyn, and J¬∆KA its complement in A. �
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Implicit parameter Θ (Dyn,Dyn?,Stat) is a transition signature.
Example. The transition A is represented graphically figure 2.1. The static structure (interpreta-
tion of Stat) is repeated left and right of the arrow I. The interpretation of Dyn is left of the
arrow: there is a symmetric Link between a and c. The interpretation of Dyn? is right of the
arrow: the Link between a and c is gone, and b has gained the A? property.

If the image of some function on an element is not shown, it implicitly means that the function
is the identity at that point. For instance, JfKA(b) = b. �

Dyn = (A, Link)
Dyn? = (A?, Link?)
Stat? = (f)

JAKA = ∅
JA?KA = {b}

J∆KA = {a,b, c}
J∆LinkKA = {(a, c), (c,a)}

Figure 2.1.: Transition A.

The next three subsections introduce concepts important to states and transitions: distance, 0-
embeddings, and how to create transitions from states. The distance treats paths through Statfun
differently from paths through Link, Link?. 0-embeddings relate two structures by defining when
one can be “found” in the other. Joins trivially construct a transition from two states, but they
are not always well-defined.

2.2.1. Pseudodistance

In this subsection we define a pseudodistance between structure elements.
In the sequel, many properties will depend on identifying a small part of a state or transition

which should satisfy some constraint, and beyond which constraints are looser. As we will see
later, the difficulty comes from the dynamic part of the structures, because static structures
are always conserved through morphisms (see next subsection) and when necessary become
bounded in size (see chapter 4). So we will define a notion of pseudodistance which identifies
all elements statically connected and only counts as a “far away” elements which may become
disconnected from one another. In a state or a transition, function symbols are only in Statfun;
they represent immutable structure of a mixture. On the other hand, links (Link and Link?)
are dynamic: they can appear and disappear. So we define a notion of pseudodistance which
ignores functions:
Definition (Pseudodistance δ). If A : Θ or A : Θ◦, let GA be the undirected, weighted graph with
vertices dom(A) and, for every a,b ∈ dom(A):

• an edge {a,b} of weight 0 whenever JhKA(a) = b for some h ∈ Statfun,

• otherwise, an edge {a,b} of weight 1 whenever (a,b) ∈ JRKA for some binary, relational
R ∈ Θ or Θ◦.

The following function is a pseudo1distance: for every a,b ∈ dom(A), δA(a,b) is the length of
1δ(a,b) = 0 does not imply a = b.
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the shortest a—b path in G. �

Balls Taking balls of radius d around elements or subdomains of structures will be very useful
in the sequel. However, note that the ball of radius 0 is particularly meaningful here since
δ is a pseudodistance: for an element a in a structure, the set of elements at distance 0 (its
0-neighbors) are the elements functionally and inverse-functionally accessible from a.

Definition (Balls). If A : Θ of A : Θ◦, d > 0 and a ∈ dom(A), the ball of radius d around a is

BA(a,d) { b ∈ A | δA(a,b) 6 d }

and naturally extends to subsets of U: if K ⊆ U, BA(K,d) is the union of the balls of radius d
around each a ∈ K∩ dom(A). �

An important feature of δ is that elements that are statically connected are considered “the
same” from a distance perspective.

Example. In figure 2.2, the state S has 4 elements. b is symetrically Linked to d. The names of the
functions in Statfun are not shown, we only see arrows, indicating that for some f1, f2 ∈ Statfun,
Jf1KS(a) = c and Jf2KS(a) = b. As earlier, function images not shown implicitly mean a loop.
For instance, Jf2KS(b) = b. The corresponding graph GS is shown on the right, and the ball of
radius 0 around b is shown in a semitransparent blue outline. �

Figure 2.2.: State S and distance between its elements.

Using the above notion of distance, it is possible to say when two states are similar enough to
be joined into a transition structure.

2.2.2. Joining states into transitions

In this subsection we give the canonical way to assemble states into transitions. The operation
is very simple, and the side-condition ensures there is no clash between the static parts of
each state. We then give a simple lemma which relates distance in joined states and in each
individual state.

For any two states S, S ′, both of their domains are in a common universe U. We forgo
looking for partial isomorphisms between states and simply consider the common elements of
dom(S) and dom(S ′). If the static structure (that is, the 0-ball) around them is the same, then S

and S ′ are “similar enough” to be meaningfully joined into a new transition:
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2. Runs and executions for transition structures

Figure 2.3.: 〈S,S ′〉 is well-defined.

Figure 2.4.: 〈·, ·〉 not defined on S,S ′

Definition (〈·, ·〉). If S,S ′ : Θ◦ and JStatKS � BS(dom(S ′), 0) = JStatKS ′ � BS ′(dom(S), 0), then
〈S,S ′〉 : Θ is:

dom(〈S,S ′〉) dom(S)∪ dom(S ′)

JAK〈S,S ′〉 JAKS for all A ∈ Dyn
JA?K〈S,S ′〉 JAKS ′ for all A ∈ Dyn
JTK〈S,S ′〉 JTKS ∪ JTKS ′ for all T ∈ Stat

〈S,S ′〉 is well-defined thanks to the proviso on JStatKS and JStatKS ′ . �

Example (and counterexample). The states S and S ′ in figure 2.3 respect the conditions neces-
sary for 〈S,S ′〉 to be well-defined.

On the other hand, in figure 2.4, 〈S,S ′〉 is not defined because JfKS � {a} = {(a,a)} and
JfKS ′ � {a,b} = {(a,a), (b,a)}. �

Formally, the condition JStatKS � BS(dom(S ′), 0) = JStatKS ′ � BS ′(dom(S), 0) is more than is
necessary for 〈S,S ′〉 to be well-defined. It would suffice to require JStatKS � S ′ = JStatKS ′ � S.
But then joins such as in figure 2.4 would be allowed. The issue with these joins is that static
structures are supposed to not change from one state to the next. The creation of d and of a b–d
link between S and S ′ is allowed because presence and linkage are dynamic properties. But
the appearance of an a in the function graph of b violates the design rule about static functions
and predicates. More formally, the information loss about the structure of S (in figure 2.4)
would prevent later operations that extract states back from transitions; those operations use
the lemma we are just about to state, which becomes false if we use the looser requirement.

We explain that next lemma. After a join, the distance between two elements can become
smaller, for instance by the addition of a link. It is possible for two elements that were infinitely
far away in two states S and S ′ to be at finite distance in 〈S,S ′〉. However (keeping with the
spirit of static functions being really static), the 0 bound is strict: elements at distance > 0 in a
state cannot be at distance 0 after a join.

Lemma 2.2.1. If 〈M,M ′〉 is defined, δ〈M,M ′〉(a,b) = 0 and a ∈ dom(M), (resp a ∈ dom(M ′)) then
δM(a,b) = 0 (resp. δM ′(a,b) = 0).

Proof. We show for M, the other version is symmetric.
First, take any a ′,b ′ ∈ dom(〈M,M ′〉) such that (a ′,b ′) ∈ JhK〈M,M ′〉 for some function symbol

h ∈ Stat. We show that if a ′ or b ′ is in dom(M), the other is as well, and (a ′,b ′) ∈ JhKM.
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By definition of JhK〈M,M ′〉, the interesting case is (a ′,b ′) ∈ (JhKM ′); if one of a ′,b ′ is in M,
say a ′ for concreteness, then since JStatKM � BM(dom(M ′), 0) = JStatKM ′ � BM ′(dom(M), 0),
(a ′,b ′) ∈ JhKM as well.

By the above and by induction on the number of 0-edges of any a–b path in G〈M,M ′〉, we get
a ∈ dom(M) and δM(a,b) = 0.

We will make use of the operation 〈·, ·〉 throughout this chapter and the next.

2.2.3. 0-embedding

In this subsection we define a restriction of embeddings called 0-embeddings and show that
0-embeddings compose.
0-embeddings are the basis for defining when a small transition can be “found” in a bigger

one. They follow the mantra started earlier: elements at distance 0 are immutably connected, so
a morphism should not be allowed to give new 0-neighbors to an element.
0-embeddings are not powerful enough, however: we will later introduce the concept of

a match, which refines 0-embeddings further by adding application conditions, as seen in the
introduction, of the form “the image of this element may not gain new 1-neighbors”. Unlike
the constraint of 0-embeddings on the absence of new 0-neighbors, which is universal, matches
will specify which elements cannot gain new 1-neighbors.

Definition (0-embedding). If A,B : Θ or A,B : Θ◦, an embedding m : A→ B is a 0-embedding if

BB(m(A), 0) ⊆ m(A)

�

A 0-embedding is simply an embedding that respects the pseudodistance δ’s identities. An
alternative design would have been to only consider the class of structures where the following
is true: for every pair of elements a,b, b accessible from a in the function graph implies a
accessible from b in the function graph. For such structures, all embeddings are 0-embeddings.

Example (Counterexample). In figure 2.5, the identity idS is an embedding but it is not a
0-embedding since the 0-ball around b in M is not part of Im(idA). �

Figure 2.5.: idA : S→M

The following lemma illustrates the action of a 0-embedding (note that it does not hold for
embeddings):

Lemma 2.2.2. If m : A→ B is a 0-embedding, a ∈ Im(m) and δB(a,b) = 0, then b ∈ Im(m) and
δB(m−1(a),m−1(b)) = 0

Proof. Since BB(Im(m), 0) ⊆ Im(m), b ∈ Im(m) and by induction on the number of 0-edges in
any path a–b in GB, since m is an embedding δA(m−1(a),m−1(b)) = 0.

Lemma 2.2.2 immediately implies composition of 0-embeddings:
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Lemma 2.2.3. If m : A → B and m ′ : B → C are both 0-embeddings, then m ′ ◦m is a 0-
embedding as well.

Proof. Immediate by lemma 2.2.2.

With the above ingredients (state joining, 0-embeddings and distance), it is possible to define
rules and how to apply them to states.

2.3. Rules, pushouts, executions

Now that states, transitions, and the morphisms between them are established, it is time to
define our structure-based version of rule application in graph rewriting. In this section, we
define those and show that a rule applied to a current state always creates a next state which
can be joined to the current one.

Consider two states S,S ′ and another state M such that it makes sense to talk about 〈S,S ′〉
and such that S can in some sense be found in M. We want to transport the differences between
S and S ′ to M, thus creating a new state M ′. The operation defined below is meant to be an
idealised version of how graph rewriting frameworks such as Kappa work.

Definition (Pushout). If S,S ′,M : Θ◦, 〈S,S ′〉 is defined, f : S → M is a 0-embedding,
BM(f(dom(S) \ dom(S ′)), 1) ⊆ Im(f) and g : dom(S ′) \ dom(S) → U \ dom(M) is injective, then
the pushout of (f,g,S,S ′,M) is M ′:

dom(M ′) dom(M) \ f(dom(S) \ dom(S ′))] Im(g)

JAKM ′ JAKM \ f(JAKS \ JAKS ′)] (f] g)(JAKS ′ \ JAKS) for all A ∈ Dyn
JTKM ′ JTKM � dom(M ′)∪ (f] g)(JTKS ′) for all T ∈ Stat

It is well-defined. First, for all T ∈ Stat JTKM � dom(M ′) and (f ] g)(JTKS ′) agree on their
intersection because 〈S,S ′〉 is defined and the image of g does not intersect dom(M). Next, the
domain of M ′ should cover the interpretation of all symbols in Θ◦:

• If a ∈ JAKM and for some a ∈ a, a ∈ f(dom(S) \ dom(S ′)) then by BM(f(dom(S) \

dom(S ′)), 1) ⊆ Im(f), and the fact that f is an embedding, a ∈ f(JAKS). Since f−1(a) /∈
dom(S), f−1(a) /∈ JAKS ′ , and so a /∈ JAKM ′ .

• Suppose there is a ∈ JAKS ′ \ JAKS. For every a ∈ a, a is not in dom(S) \dom(S ′), moreover
if (f] g)(a) /∈ dom(M) then a ∈ dom(S ′) \ dom(S) by assumption on f,g.

• For the relational symbols of Stat, trivial. We show that if h ∈ Statfun, a ∈ dom(M ′) and
(a,b) ∈ JhKM ′ , then b ∈ dom(M ′):

– If (a,b) ∈ (f ] g)(JTKS ′) then b ∈ (f ] g)(dom(S ′)). If b ∈ Im(g), b ∈ dom(M ′) by
definition of dom(M ′), otherwise b ∈ Im(f), so b ∈ dom(M) by definition of f, and
b /∈ f(dom(S) \ dom(S ′)), so b ∈ dom(M ′) by definition of dom(M ′).

– If (a,b) ∈ JTKM � dom(M ′) then b ∈ dom(M), so we need to show b /∈ f(dom(S) \

dom(S ′)). Suppose b ∈ Im(f). Since f is a 0-embedding, a ∈ Im(f) and (f−1(a), f−1(b)) ∈
JhKS. Since a ∈ dom(M ′), by definition of dom(M ′) we have f−1(a) ∈ dom(S ′) (oth-
erwise a would be in f(dom(S) \ dom(S ′)). So by assumption on 〈S,S ′〉 (that is,
JStatKS � dom(S ′) = JStatKS ′ � dom(S)) (f−1(a), f−1(b)) ∈ JhKS ′ . So f−1(b) ∈
dom(S ′), so b /∈ f(dom(S) \ dom(S ′)).
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�

The definition above realizes literally transports the differences between S and S ′ along f
and g, and applies those to M in order to construct M ′. Morally, M ′ is to M what S ′ is to S.

Design note. To illustrate why the proviso BM(f(dom(S) \ dom(S ′), 1) ⊆ Im(f) is necessary,
consider some a ∈ dom(S) \ dom(S ′) such that there is b ∈ dom(M) \ Im(f) and (f(a),b) ∈
JLinkKM. In other words: a “disappears” in 〈S,S ′〉, yet at the same time the f-image of a has a
neighbor in M. Here the definition of M ′ would leave a out of dom(M ′) but keep (f(a),b) in
JLinkKM ′ , which would result in an ill-defined structure.

We believe that it may be possible to have a more complex pushout definition and get rid
of the proviso. The more complex definition would discard atoms that mention disappearing
elements (such as the pair (f(a),b)). As a point of interest, this seems related to the difference
between forms of graph rewriting which can allow side-effects (SPO) or forbid them (DPO). �

Example. This is an example of a pushout. In figure 2.6, idS : S → M is a 0-embedding.
dom(S) \ dom(S ′) = {c}, and c does not get any new link when going to M. g = id{e} maps the
new element e of S ′. Since b ∈ JAKS but b /∈ JAKS ′ , b ∈ JAKM but b /∈ JAKM ′ . �

Figure 2.6.: M ′ is the pushout of (idS,g,S,S ′,M).

This next lemma shows that the pushout construction (which correspond to rule application,
as we will see later) creates a next state similar enough to the current one for the join operation
to be well-defined:

Lemma 2.3.1. If M ′ is the pushout of (f,g,S,S ′,M) then 〈M,M ′〉 is defined.

Proof. We want JStatKM � BM(dom(M ′), 0) = JStatKM ′ � BM ′(dom(M), 0). Let m f ] g. First,
note that since g does not touch M, and dom(S) ∩ dom(S ′) ⊆ BS ′(dom(S), 0), the following
holds:

dom(M)∩m(dom(S ′)) ⊆ m(BS ′(dom(S), 0)) (2.1)

Moreover g defined on S ′ \S and BS ′(dom(S), 0) ⊆ dom(S) provide the ⊇-direction in the
following equality (the other direction is trivial):

f (JTKS ′ � BS ′(dom(S), 0)) = m(JTKS ′) � m(BS ′(dom(S), 0)) (2.2)
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2. Runs and executions for transition structures

(note that the left-hand side of (2.2) is well-defined since any ball is closed under function
application for every function of a structure).

Now:

JTKM � BM(dom(M ′), 0)
= f(JTKS � BS(dom(S ′), 0))∪ JTKM � BM(dom(M ′), 0) since f is a 0-embedding
= f(JTKS ′ � BS ′(dom(S), 0))∪ JTKM � BM(dom(M ′), 0) since 〈S,S ′〉 is defined
= m(JTKS ′) � m(BS ′(dom(S), 0))∪ JTKM � dom(M ′) by (2.2) (left) and trivially (right)
= m(JTKS ′) � dom(M)∪ JTKM � dom(M ′) by (2.1)
=
(
m(JTKS ′)∪ JTKM � dom(M ′)

)
� dom(M) trivial

= JTKM ′ � dom(M) by definition of JTKM ′

A rule contains the data necessary to build a pushout plus some additional information:

Definition (Rule). A rule r is a triple of the form (S,K,S ′) such that S,S ′ : Θ◦ and K ⊆ S. �

The K part, called the application condition of a rule, is a form of application condition from
graph rewriting. When a rule (in the graph rewriting sense) is applied to a graph, the larger
context may add edges between nodes present in the rule and nodes from the context. To forbid
that, one can specify nodes that should be free, i.e. nodes that should not gain edges by going
into a larger context. Given a 0-embedding m : A→ B between two structures with a defined
distance, an element a ∈ dom(A) gains no edges (no 1-neighbor) if the following is true :

BB(m(a), 1) ⊆ Im(m)

Note that since m is an embedding, new edges must touch the context, that is: the complement
of the image of m.

We define what a rule application is and explain more afterwards:

Definition (Rule(s) application). If r (S,K,S ′) is a rule and M,M ′ : Θ◦ then M _r M ′ if
there are f,g such that M ′ is the pushout of (f,g,S,S ′,M) and BM(f(K), 1) ⊆ Im(f).

In that case, f,g are pushout witnesses for M _r M ′.
If R is a set of rules, then M _R M ′ if M _r M ′ for some r ∈ R

�

Example. This example shows how to apply the left-hand side of a rule to a state. As illustrated
in figure 2.7, the identity on S is a good candidate for a successful application of the rule
(S, {a, c},S ′) (for some S ′ not given here). d /∈ {a, c} so the new link between d and e is not
a problem. Note that c is free even though it has a link; the issue is newly formed links, not
existing one (in that sense our notion of free is different from the usual one in graph rewriting).

�

We have formalised the rules and rule applications given in the introduction. In particular, a
rule (S,K,S ′) must find a 0-embedding between its left-hand side S and a state M, with the
application condition BA(m(K), 1) ⊆ m(dom(S)). In the language of rule-based models, the rule
is said to have a match in the larger mixture M.

However, formulas (introduced later) specify sets of transitions. In the next section, we define
how the notion of match can be defined between transitions. We will later link that denotational
notion to the rule application we have just defined.
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Figure 2.7.: idS : S→M

2.4. Patterns and matches

In this section, we introduce patterns, which are transitions equipped with application conditions
(just as rules had an application in the previous section). Then, the notion of 0-embedding
is refined to that of match: a match from a pattern is just a 0-embedding that respects the
application conditions of the pattern. The set of transitions where a pattern p can match is
called the set of instances of p.

We also give some simple lemmas and show that matches compose.

Patterns
Definition (Pattern). If Σ is a signature, A : Σ and K ⊆ dom(A), the pair a (A,K) is a pattern.
(A,K) : Σ means that (A,K) is a pattern and A : Σ. �

A stricter notion of pattern is sometimes necessary because of the proviso BM(f(dom(S) \

dom(S ′), 1) ⊆ Im(f) in the definition of a pushout. If an element a in a pattern (〈S,S ′〉,K)
disappears and has gained an edge after a morphism m into a transition 〈M,M ′〉, the proviso
will not be respected (here f will be m � dom(S)) and M ′ will not be a pushout. Pure patterns
avoid the issue – and the patterns we will most often manipulate later on will all be pure by
construction.
Definition (Pure pattern). If (A,K) is a pattern and J∆KA ⊆ K, then (A,K) is a pure pattern. �

At this point, it is reasonable to ask why we define a notion so similar to rules. Rules and
pushouts are operational, and should represent an idealised version of how actual rewriting
programs work. But we will later reason using the denotational notion of pattern and match.
In the denotational setting, the definition of pattern is natural and easier to manipulate. We
will soon make explicit when the operational and the denotational views coincide: in the next
section, we show the relationship between patterns and rules, as well as between matches and
pushouts.

As a side note, we hope to unify patterns and rules in a later simplification of the formalism
where, at the cost of a more complex definition of 〈·, ·〉 (namely keeping track of which elements
come from the left and which elements come from the right), there is no difference between the
information contained in a pattern and in a rule.

Matches A pattern is like a rule that has already integrated its two states, but there is in
general no unique way to decompose a pattern into states. However, there is a much more
direct definition of when a pattern can be “found” in a larger one:
Definition (Match). If (A,K1), (B,K2) : Θ, a 0-embedding m : A→ B is a match from (A,K1) to
(B,K2) whenever

• BB(m(K1), 1)∪ J∆KB ⊆ Im(m) and
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• m(K1) ⊆ K2

The notation is m : (A,K1)→ (B,K2), or m : (A,K1)→ B if K2 = dom(B). The set K in (A,K) is
called the application condition of (A,K). �

Matches give meaning to the application condition of a pattern. As mentioned earlier, in a
graph rewrite rule, a node will sometimes be marked free; that is: not connected to anyone.
Unlike a regular node which may gain edges through a match in a larger graph, free nodes must
not gain edge. Similarly, an element in the application condition of a pattern cannot gain an edge;
as with rule application, this is expressed with a proviso of the form BB(m(K1), 1) ⊆ Im(m).

The condition m(K1) ⊆ K2 ensures matches compose (but we will most often refine to a
pattern of the form (B,dom(B)), thus trivialising the condition).

Finally, J∆KB ⊆ Im(m) ensures that a match cannot create additional changes. To contrast
with rule application: with rules, the next state is mechanically derived in the form of a pushout,
so the changes J∆K are induced by the definition. With patterns, the set of acceptable changes
must be explicitly restricted.

Matches are also defined between states; the definition just considers matches between trivial
transitions created by joining a single state with itself:

Definition (State match). If (S,K), (M,K ′) : Θ◦ and m : (〈S,S〉,K)→ (〈M,M〉,K ′) then m refines
(S,K) to (M,K ′) (written m : (S,K)→ (M,K ′)). �

One maybe helpful intuition for rules and patterns is: rules & pushouts define “building a
next state from a state and a transition motif” while patterns & matches define “adding context
to a transition motif”.

Example. The identity idA figure 2.8 is a match from the pattern (A, {c}) to B. The element c is
marked free in the precondition of A to indicate that c is part of the application condition. One
can check that J∆KA = {a} ⊆ Im(m) and that c does not gain any new link. However, b is not in
the free set and the match adds a link between d and b. �

Figure 2.8.: idA : (A, {c})→ B

Instances Finally it is useful to directly talk about all the transitions into which a pattern can
match.

Definition (Instances). If there exists an m such that m : (A,K) → B, then B is an instance of
(A,K). Insts((A,K)) is the set of instances of (A,K). If P is a set of patterns, Insts(P) is the union
of Insts((A,K)) for (A,K) ∈ P. �

Note that instances only consider transitions, not other patterns. In the match of figure 2.8, B
is an instance of (A, {c}).
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2.4.1. Properties of matches

In this subsection we give useful properties of matches. The first is that an isomorphism is
always a match:

Lemma 2.4.1. If m : A→ B is an isomorphism, then m : (A,KA)→ (B,KB) whenever m(KA) ⊆
KB.

Proof. m(dom(A)) = dom(B).

The next lemma shows the effect of application conditions. Recall that with a 0-embedding,
an element can not gain new 0-neighbors. With a match from a pattern (A,K), elements outside
of K are allowed to gain new 1-neighbors, but elements in K are not:

Lemma 2.4.2. If m : (A,K) → B, a ∈ m(K),b ∈ dom(B) and δB(a,b) = 1 then b ∈ Im(m) and
δA(m

−1(a),m−1(b)) = 1.

Proof. By definition of a match b ∈ Im(m). There are c,d such that δB(a, c) = 0, (c,d) or
(d, c) ∈ JLinkKB ∪ JLink?KB and δB(d,b) = 0. Applying lemma 2.2.2 yields c,d ∈ Im(m) and
δA(m

−1(a),m−1(c)) = 0 and δA(m−1(b),m−1(d)) = 0. Sincem is an embedding, δA(m−1(c),m−1(d)) 6
1, so δA(m−1(a),m−1(b)) 6 1. δB(a,b) 6 δA(m−1(a),m−1(b)) so δA(a,b) = 1.

Just as the “no new 0-neighbor” property helps show that 0-embeddings compose, the
previous lemma helps show that matches compose:

Lemma 2.4.3. Ifm1 : (A1,K1)→ (A2,K2) andm2 : (A2,K2)→ (A3,K3), thenm2 ◦m1 : (A1,K1)→
(A3,K3).

Proof. The nontrivial part is showing BA3(m2 ◦m1(K1), 1) ⊆ m2 ◦m1(A1). Consider a ∈
m2(m1(K1)) and b such that δA3(a,b) 6 1. Since m1(K1) ⊆ K2 and BA3(m2(K2), 1) ⊆ m2(A2),
b ∈ m2(A2). By lemmas 2.2.2 or 2.4.2 (depending on whether δA3(a,b) = 0 or 1), δA2(m

−1
2 (a),m−1

2 (b)) 6
1. Since m−1

2 (a) ∈ m1(K1) and BA2(m1(K1), 1) ⊆ m1(A1), m
−1
2 (b) ∈ m1(A1).

The rest is by lemma 2.2.3.

The following lemma is a form of weakening: if a match guarantees an application condition
KA and relies on an application condition KB, then it guarantees any condition K ′A weaker than
KA and it relies on any condition K ′B stronger than KB:

Lemma 2.4.4. If m : (A,KA)→ (B,KB), K ′A ⊆ KA, and KB ⊆ K ′B, then m : (A,K ′A)→ (B,K ′B).

Proof. Apply lemma 2.4.1 twice on the identity, and lemma 2.4.3 once.

The next lemma is important. It generalises the “no new 1-neighbor” consequence of
application conditions: if an element is at distance d of the application condition boundary (on
the inside), then it has no new (d+ 1)-neighbor:

Lemma 2.4.5. If m : (A,BA(K,d)) → B, a ∈ m(K),b ∈ dom(B) and δB(a,b) 6 d + 1 then
b ∈ m(A) and δA(m−1(a),m−1(b)) = δB(a,b).

Proof. By induction on k δB(a,b). If 0, lemma 2.2.2. Otherwise true for k ′ < k and there is
c ∈ dom(B) such that δB(a, c) = k− 1 and δB(b, c) = 1. By induction δA(m−1(a),m−1(c)) =

k− 1 6 d, so c ∈ m(BA(K,d)), so by lemma 2.4.2: b ∈ m(A) and δA(m
−1(c),m−1(b)) = 1; so

δA(m
−1(a),m−1(b)) = k (distances do not get longer in an embedding).

Now that the proper notions are introduced, we can connect patterns and matches on the
one hand, with rules and pushouts on the other.
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2.5. Patterns and rules

In this section, we show that we can go back and forth between rule application and pattern
match if the pattern is pure and the transition respects a technical condition.

We start with simple technical definitions and introduce a partial converse of joining states
together: a way to split a transition into a precondition state and a postcondition state. We
also introduce the notion of support, which is central in this thesis. Recall the distinguished
predicates Has and Has? from section 2.2: a transition is supported if for all its elements, at least
of one Has and Has? is true.

We start with some general notions necessary for the sequel. The symmetry of transition
signatures can be used to flip a transition around:

Definition (Mirror of a transition). If A : Θ, its mirror A−1 is A with the interpretations of Dyn
and Dyn? flipped; that is, JAKA−1 = JA?KA and JA?KA−1 = JAKA for every A ∈ Dyn. �

The next definition singles out the dynamic unary predicate Has. There is no unique way
to decompose a transition into states, so given a transition, we pick the functional closure of
the interpretation of Has as the substructure representing the “before” state, and the functional
closure of the interpretation of Has? as the substructure representing the “after” state.

Definition (Pre and post states). If A : Θ, Pre(A) : Θ◦ is the reduct of A � JHasKA to Θ◦ and
Post(A) is Pre(A−1). �

Note that in general, it is not the case that Pre(〈S,S ′〉) = S and Post(〈S,S ′〉) = S ′.

The next definition is used throughout this thesis:

Definition (Supported transition). If A : Θ, A is supported whenever dom(A) = JHasKA ∪ JHas?KA.
�

Definition (Strongly supported transition). If A : Θ, A is strongly supported whenever for all
a ∈ dom(A), BA(a, 0) ⊆ JHasKA or BA(a, 0) ⊆ JHas?KA. �

Any strongly supported transition is of course supported. Support means that a transition
can be split into two states without information loss. Strong support means that those two
states can be merged back together using 〈·, ·〉.

Lemma 2.5.1. If A is strongly supported then 〈Pre(A),Post(A)〉 = A

Proof. Trivial.

The next lemma goes from pushout to match: given the application of some rule (S,K,S ′) to a
state M, producing a new state M ′, when can one build a match from 〈S,S ′〉 to 〈M,M ′〉?

Lemma 2.5.2. If M _(S,K,S ′) M ′ with pushout witnesses f,g, then for any K ′ ⊆ dom(S ′) \
dom(S), (f] g) : (〈S,S ′〉,K]K ′)→ 〈M,M ′〉.

Proof.
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f ] g is a 0-embedding f ] g is injective. Now we show the structure-preserving properties.
First, for all A ∈ Dyn:

JAK〈M,M ′〉 � Im(f] g)

= JAKM � Im(f] g) by def. of 〈M,M ′〉
= JAKM � Im(f) by dom(M)∩ Im(g) = ∅
= f(JAKS) since f is an embedding
= (f] g)(JAKS) g defined nowhere on dom(S)

= (f] g)(JAK〈S,S ′〉) by def. of 〈S,S ′〉

Now for all A? ∈ Dyn?:

JA?K〈M,M ′〉 � Im(f] g)

= JAKM ′ � Im(f] g) by def. of 〈M,M ′〉
=
(
JAKM � Im(f] g)

)
\ f
(
JAKS \ JAKS ′

)
∪ (f] g)

(
JAKS ′ \ JAKS

)
by def. of JAKM ′

= f
(
JAKS

)
\ f
(
JAKS \ JAKS ′

)
∪ (f] g)

(
JAKS ′ \ JAKS

)
by assumption on f,g

= (f] g)
(
JAKS \ (JAKS \ JAKS ′)∪ (JAKS ′ \ JAKS)

)
by injectivity of f] g

= (f] g)
(
JAKS ′

)
trivial set operations

= (f] g)
(
JA?K〈S,S ′〉

)
by def. of 〈S,S ′〉

For all T ∈ Stat, by definition of f] g and the fact that f is an embedding :

JTKM � Im(f] g) = JTKM � Im(f) = f(JTKS) = (f] g)(JTKS) (2.3)

Moreover, by definition of dom(M ′):

f(dom(S) \ dom(S ′))∩ dom(M ′) = ∅ (2.4)

So:

JTKM ′ � Im(f] g)
= JTKM � dom(M ′) � Im(f] g)∪ (f] g)(JTKS ′) by def. of JTKM ′

= JTKM � dom(M ′) � Im(f)∪ (f] g)(JTKS ′) since Im(g)∩ dom(M ′) = ∅
= f(JTKS) � dom(M ′)∪ (f] g)(JTKS ′) since f is an embedding
= f(JTKS � dom(S ′))∪ (f] g)(JTKS ′) by (2.4)
= f(JTKS ′ � dom(S))∪ (f] g)(JTKS ′) since 〈S,S ′〉 is defined
= (f] g)(JTKS ′) trivial (2.5)

Therefore :

JTK〈M,M ′〉 � Im(f] g)

=
(
JTKM � Im(f] g)

)
∪
(
JTKM ′ � Im(f] g)

)
by def. of 〈M,M ′〉

= (f] g)
(
JTKS

)
∪ (f] g)

(
JTKS ′

)
by (2.3) (left), (2.5) (right)

= (f] g)
(
JTK〈S,S ′〉

)
by def. of 〈S,S ′〉
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Now we know that (f] g) is an embedding. To show that it is a 0-embedding, we show that if
(b,a) ∈ JhK〈M,M ′〉 and a ∈ Im(f] g), then b ∈ Im(f] g) (the other direction is obvious). The rest
is by induction on the minimal number of 0-edges between a and b in G〈M,M ′〉.

If a ∈ Im(f), suppose b ∈ dom(M). Then b ∈ Im(f) since f is a 0-embedding. If b /∈ dom(M),
then by definition of dom(M ′), b ∈ Im(g).

If a ∈ Im(g), then (f] g)−1(a) /∈ dom(M), so (b,a) ∈ (f] g)(JhKS ′), so b ∈ Im(f] g).

J∆K〈M,M′〉 ⊆ Im (f ] g) For all A ∈ Dyn, by definition of M,M ′, a ∈ JAKM \ JAKM ′ implies
a ∈ Im(f) and a ∈ JAKM ′ \ JAKM implies (f] g)(JAKS ′ \ JAKS).

B〈M,M′〉 ((f ] g) (K ]K′) ,) ⊆ Im (f ] g) Let e ∈ K ] K ′, d ∈ dom(〈M,M ′〉), a (f ] g)(e)
and δ〈M,M ′〉(a

′,b) 6 1.
By definition there are b, c such that δ〈M,M ′〉(a,b) = 0, (b, c) or (c,b) ∈ JLinkK〈M,M ′〉 ∪

JLink?K〈M,M ′〉, and δ〈M,M ′〉(c,d) = 0. Since f ] g is a 0-embedding, we have: c ∈ Im(f ] g)
implies d ∈ Im(f] g)

So it now suffices to show c ∈ Im(f] g).

• If the link is in JLink?K〈M,M ′〉 \ JLinkK〈M,M ′〉 then by definition of 〈M,M ′〉, c ∈ Im(f] g).

• Otherwise the link is in JLinkK〈M,M ′〉 = JLinkKM, so b, c ∈ dom(M). Now suppose a ∈
dom(M) and δM(a,b) = 0. Therefore e ∈ K (since (f] g)(K ′) does not touch dom(M)) and
δM(a, c) 6 1, so by definition of a match c ∈ Im(f) ⊆ Im(f] g).
So we will show that a ∈ dom(M) and δM(a,b) = 0. We know b ∈ dom(M) and
δ〈M,M ′〉(a,b) = 0 so by lemma 2.2.1, a ∈ dom(M) and δM(a,b) = 0.

The next lemma complements the previous one by going from match to pushout: given a match
from a pattern to a transition, when can one derive a rule from the pattern that can be applied
to construct exactly that transition?

Lemma 2.5.3. If (A,K) is a pure pattern, m : (A,K) → 〈M,M ′〉, JHasKM = dom(M), JHasKM ′ =

dom(M ′) and r (Pre(A),K � dom(Pre(A)),Post(A)) then M _r M ′.

Proof. Let S be the reduct of A � m−1(dom(M)) to Θ◦. Let S ′ be the reduct of A � m−1(dom(M ′))
to Θ◦.

First, we show S = Pre(A). Since S and Pre(A) are both Θ◦-reducts of induced substructures
of A, dom(S) = dom(Pre(A)) implies S = Pre(A).

• If a ∈ S then m(a) ∈ dom(M) so m(a) ∈ JHasKM by assumption on JHasKM. Since m is an
embedding, a ∈ Pre(A).

• If a ∈ Pre(A) then a ∈ A � {b} for some b ∈ JHasKA; by assumption on M,M ′, m(b) ∈
dom(M). Since m is an embedding, m(a) ∈ 〈M,M ′〉 � {m(b)}, so δ〈M,M ′〉(a,b) = 0. So by
lemma 2.2.1, m(a) ∈ dom(M) as well.

By the same reasoning S ′ = Post(A). So r = (S,K � dom(S),S ′).
We now show M _r ′ M ′. Note that by lemma 2.5.1, 〈S,S ′〉 is defined and equal to A.
Since m is an embedding and M is a substructure of 〈M,M ′〉, dom(S) = m−1(dom(M)).
Let f m � dom(S). f : S → M is an embedding, by restriction of m. To show that

BM(f(dom(S)), 0) ⊆ Im(f), it suffices to show that for every function symbol h ∈ Stat, if
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b ∈ A � m−1(M), a ∈ dom(M) and (a,b) ∈ JhKM then a ∈ Im(m). Since Θ◦ ⊆ Θ and by definition
of 〈M,M ′〉 we have δ〈M,M ′〉(a,b) = 0 and m a 0-embedding, so by definition of a 0-embedding,
a ∈ Im(m).

To get BM(dom(S) \ dom(S ′), 1) ⊆ Im(f), by the above it suffices to show that if (a,b) ∈
JLinkKM and f−1(a) is defined and in dom(S) \ dom(S ′), then b ∈ Im(f). Take such an a. Since
m is an embedding, a ∈ JHasKS and a /∈ JHasKS ′ , so a ∈ J∆KA. Since (A,K) is pure, J∆KA ⊆ K, so
b ∈ Im(f).

We obtain the rule application condition BM(f(K � dom(S)), 1) ⊆ Im(f) from B〈M,M ′〉(m(K), 1) ⊆
Im(m) since M is a substructure of 〈M,M ′〉 and Im(m) \ Im(f) ⊆ dom(M ′) \ dom(M). So
f : (S,K � dom(S))→M.

Again, sincem is an embedding and M ′ is a substructure of 〈M,M ′〉, dom(S ′) = m−1(dom(M ′)).
By definition of S,S ′, m(dom(S ′) \ dom(S)) ∩ dom(M) = ∅; so let g : dom(S ′) \ dom(S) →
U \ dom(M) x 7→ m(x). As a restriction of m, g is injective. Trivially, m = f] g.

Similarly, m(dom(S) \ dom(S ′))∩ dom(M ′) = ∅. Moreover, since m is a match and 〈M,M ′〉 is
supported (by assumption on dom(M) and dom(M ′)), dom(M ′) \dom(M) = Im(g) and dom(M) \

dom(M ′) = f(dom(S) \ dom(S ′)). Put together :

dom(M ′) = dom(M) \ f(dom(S) \ dom(S ′))] Im(g) (2.6)

(note that f is defined and equal to m on dom(S) \dom(S ′), and that g does not map to dom(M)).
For all A ∈ Dyn:

JAKM ′ = JAKM \ (JAKM \ JAKM ′)] (JAKM ′ \ JAKM)

= JAKM \m(JAKS \ JAKS ′)]m(JAKS ′ \ JAKS) since m : (A,K)→ 〈M,M ′〉
= JAKM \ f(JAKS \ JAKS ′)]m(JAKS ′ \ JAKS) by definition of f

The decomposition of dom(M ′) given by (2.6) yields:

JTKM ′ = JTKM � dom(M ′)∪m(JTKS ′)

By JStatKM � BM(dom(M ′), 0) = JStatKM ′ � BM ′(dom(M), 0) (by assumption on 〈M,M ′〉) for
the JTKM � dom(M ′) part, and by g = m � dom(S ′) and the fact that m is an embedding for the
m(JTKS ′) part.

So M ′ is a pushout of (f,g,S,S ′,M).

To summarise the last two lemmas:

• If a rule applied to a state produces a pushout with witnesses f,g, then f] g is a match
from (morally) the rule to the 〈state, pushout〉 transition.

• If there is a match m between a pure pattern and 〈M,M ′〉, then the rule induced by the
pattern, when applied to M, produces M ′ as pushout. Moreover, the proof defines the
pushout witnesses f and g such that m = f] g.

It is easy to check that under the right conditions (pure pattern, strongly supported transitions),
the composition of those lemmas in any order yields the identity function. Now that the 1-step
operational and denotational views are connected, we move to traces.
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2.6. Runs and executions

In this section we extend the operational and denotational views to traces (as seen for rule-
based models in the introduction) and we give conditions that are sufficient to make both views
coincide.

Operational view When given a starting state, a set of rules induces a pushout-based trace we
call an execution. Since rule application (by pushout) generates states that can be joined into
transitions, a set of rules can now generate sequences of transitions from a given starting state:
Definition (Executions). If R is a set of rules, and M0,M1, . . . is a possibly infinite sequence
such that M0 _R M1 _R M2 _R . . ., then 〈M0,M1〉, 〈M1,M2〉, . . . is an execution starting from
M0 induced by R (well-defined by lemma 2.3.1). The set of all executions starting from a state
M : Θ◦ induced by R is execM(R) �

Denotational view Instead of being iteratively generated, like executions, runs are a function of
sets of transitions. They must make sure that their Pre and Post match pairwise. This denotational
view paves the way for runs defined on transitions that are models of a formula.
Definition (Run). If M is a set of transitions, the runs ρ(M) of M are the possibly infinite
sequences r A1,A2, . . . of supported transitions from M such that for all Ai,Ai+1 ∈ r we have
Post(Ai) = Pre(Ai+1). �

Definition (Run from initial state). If S : Θ◦ the S-runs ρS(M) of M are the runs of the form
A1, . . . of M such that S = Pre(A1).

�

Definition (From patterns to rules). If P is a set of patterns the set of rules rules(P) is:

rules(P) {(Pre(A),K � dom(Pre(A)),Post(A)) | (A,K) ∈ P}

�

Contrast runs and executions: both are sequences of transitions; one is described operationally
and the other denotationally. The task ahead is to find out when they are the same.

The next few technical lemmas prepare the theorem at the end of this section; in particular they
show that when Has consistently encodes presence in a state, the operational and denotational
trace generation processes maintain that consistency.

Lemma 2.6.1. If M : Θ◦ is such that dom(M) = JHasKM, A is strongly supported, and M ′ is the
pushout of (f,g,Pre(A),Post(A),M) then dom(M ′) = JHasKM ′ .

Proof. Since A is strongly supported, every element in dom(A) � JHasKA is in JHasKA and so
JHasKPre(A) = dom(Pre(A)). The same goes for Has? and Post(A). The rest is trivial by definition
of a pushout.

Lemma 2.6.2. If A is strongly supported, B is supported and B is an instance of (A,K) for some
K, then B is strongly supported.

Proof. Suppose there are b1,b2 such that b1 ∈ dom(B � {b2}), b1 /∈ JHas?KB, b2 ∈ JHas?KB.
As B is supported, b1 ∈ J∆KB, so there is a1 ∈ dom(A) such that f(a1) = b1 for some

embedding f of A into B, and some a2 ∈ dom(A) such that a2 ∈ dom(A � {a1}) and a2 ∈ JHasKA,
f(a2) = b2. By definition of an embedding, a1 /∈ JHas?KA, which contradicts the definition of
strong support.
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This technical lemma simply ensures that Pre(·), Post(·) and 〈·, ·〉 interact well together.

Lemma 2.6.3. If M,M ′,M ′′ : Θ◦ and 〈M,M ′〉, 〈M ′,M ′′〉 are defined, then Post(〈M,M ′〉) =

Pre(〈M ′,M ′′〉).

Proof. If a ∈ dom(Post(〈M,M ′〉)) there is b ∈ JHasKM ′ such that a ∈ dom(〈M,M ′〉 � JHasKM ′).
Since JStatKM � BM(dom(M ′), 0) = JStatKM ′ � BM ′(dom(M), 0), a ∈ dom(M ′). Similarly, if
a ∈ Pre(〈M ′,M ′′〉), a ∈ dom(M ′). So dom(Post(〈M,M ′〉)) = dom(Pre(〈M ′,M ′′〉)). The equality of
Dyn and Stat is by further unrolling of definitions.

Main theorem We now prove the main theorem of this chapter: if patterns include all changes
in their application conditions and both patterns and the starting state treat Has consistently,
then the operational and denotational trace semantics of patterns are equal.

The proof is by double inclusion: from (pushout-based) executions to (match-based) runs, we
show using lemma 2.5.2 that if a rule r is induced by a pattern p, then a pushout based on r
induces a match for p. From (match-based) runs to (pushout-based) executions, we show using
lemma 2.5.3 that the target of a match from a pattern p can be decomposed into the ingredients
of a pushout starting from a rule induced by p.

Theorem 2.6.4. If P is a set of pure and strongly supported patterns, M0 : Θ◦ and JHasKM0
=

dom(M0) then execM0
(rules(P)) = ρM0

(Insts(P))

Proof.

execM0
(rules(P)) ⊆ ρM0

(Insts(P)) Let r 〈M0,M1〉, . . . ∈ execM0
(rules(P)).

By lemma 2.6.1, JHasKM = dom(M) for any M that is _rules(P)-accessible from M0; this imme-
diately implies 〈Mi,Mi+1〉 is supported for all 〈Mi,Mi+1〉 ∈ r. By lemma 2.6.3 Post(〈Mi,Mi+1〉) =
Pre(〈Mi+1,Mi+2〉) whenever 〈Mi+1,Mi+2〉 ∈ r.

Take any 〈Mi,Mi+1〉 ∈ r. By definition of execM0
(rules(P)) there are (A,K) ∈ P, f :

(Pre(A),K � dom(Pre(A))) → Mi, and an injection g : dom(Post(A)) \ dom(Pre(A)) → U \Mi

such that Mi+1 is the pushout of (f,g,Pre(A),Post(A),Mi).
A is supported so by lemma 2.5.1, 〈Pre(A),Post(A)〉 = A. Note that K \ (K � dom(Pre(A))) ⊆

dom(Post(A)) \ dom(Pre(A)). Let m f] g
By lemma 2.5.2, m : (A,K)→ 〈Mi,Mi+1〉. So r ∈ ρM0

(Insts(P)).

ρM0
(Insts(P)) ⊆ execM0

(rules(P)) Let r B1, . . . ∈ ρM0
(Insts(P)).

By definition of ρM0
(Insts(P)), each Bi is supported, Pre(B1) = M0 and Post(Bi) = Pre(Bi+1)

whenever Bi+1 ∈ r; and by lemma 2.5.1 〈Pre(Bi),Post(Bi)〉 = Bi.
By lemma 2.6.2, each Bi is strongly supported, so JHasKPre(Bi) = dom(Pre(Bi)) for every

Bi ∈ r, and JHasKPost(Bi) = dom(Post(Bi)).
By definition of ρM0

(Insts(P)) there is some (A,K) ∈ P and somem : (A,K)→ 〈Pre(Bi),Post(Bi)〉.
By lemma 2.5.3, with r (Pre(A),K � dom(Pre(A)),Post(A)) we get Pre(Bi) _r Post(Bi); and
r ∈ rules(P) by definition so Pre(Bi) _rules(P) Post(Bi).

So r ∈ execM0
(rules(P)).

In figure 2.9, we see the connection between the execution of the rules for a pattern set P and
the runs on the instance of P. Note that r = (Pre(A),K � dom(Pre(A)),Post(A)), and similarly for
r ′ and r ′′.
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2. Runs and executions for transition structures

Figure 2.9.: Left: an execution in execM0
(rules(P)). Right a run in ρM0

(Insts(P)).
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3. Execution of change-minimal specifications

In this chapter, we study formulas on transitions and states and further explore the connection
between runs and executions.

Formulas and ↓ We start in section 3.1 by defining a change order on transitions which describes
“how much” a transition does relative to another. Then in section 3.2 we define logic formulas
on transitions, including the minimisation operator, which specifies the change-minimal models
of a formula, as hinted at in the introduction. This defines FO[↓], which is first-order logic
extended with a unary minimisation operator. After section 3.2, we derive a notion of run on
formulas, and the rest of the chapter is about the runs associated with formulas and finding
rules which execute in a way that corresponds with the runs.

Runs on models, runs on instances First, we will introduce a parameterised function from
formulas to patterns (the canonical patterns). We define those in section 3.3. For now consider
that the canonical patterns provide a good “summary” of what the formula is about. Patterns can
be instantiated, and the set of instances of the canonical patterns of a formula overapproximates
the models of that formula.

Now there are three ways to look at runs based on φ:

1. We can consider the runs on the models of φ.

2. We can instantiate the canonical patterns of φ and consider the runs of those instances.

3. We can convert those canonical patterns into rules and consider the execution of those
rules.

Thanks to the previous chapter, we know conditions where 2. and 3. coincide. The rest of the
chapter after section 3.2 will be dedicated to building formulas where 1. and 2. coincide.

This will not be the end of the story. The resulting execution may require an infinite number
of rules. The following chapter will address the issue.

Note on figures: in the sequel, we move to a more comfortable representation of transitions. Elements
in figures belong to a single unary predicate from Stat, such as K or E. This predicate is shown within a
large circle. Around the circle, identifers such as a,b, . . . are as before, and sans-serif letters represent
belonging to a dynamic predicate of Dyn (left of the arrow) or of Dyn? (right of the arrow).

3.1. Change order

Here we define an order E between transitions such that if A E B, A can be said to do less than
B. Recall that change is the difference between the interpretation of Dyn and the interpretation
of Dyn?, so we consider the product subset relation to compare changes. With the order E, we
can then define minimisation, as we shall see in the next section.
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3. Execution of change-minimal specifications

Figure 3.1.: A E B. F = ¬Link(a,b)∧ Link?(a,b)

As mentioned in the introduction, specifications on transitions are too lax when it comes to
having any hope of generating traces. To motivate the next section, we informally use formulas.
If we write ¬Link(a,b)∧Link?(a,b) (to require that a and b become linked), we are not explicitly
forbidding additional changes; such as the creation of a brand new element c.

However, if we wish to generate traces using this formula, we should make the additional
assumption that all observations have been accounted for. If a c could appear exactly when a and b
become linked, we would know it.

Take two transitions A,B with the exact same precondition but where

• A creates an a–b link.

• B creates a–b link and creates c.

We would like a way to compare A to B and conclude that while A is a good model of our
formula when all observations have been accounted for, B is not. A and B can be seen on figure 3.1.

Definition (Change order). If A,B : Θ, we say that A E B whenever:

(1) JDynKA = JDynKB

(2) JStatKA = JStatKB � dom(A)

(3) J∆AKA ⊆ J∆AKB for all A ∈ Dyn.

(4) dom(A) ⊆ dom(B)

�

Example. In the biology-inspired example of figure 3.1, the transition B has two changes:
the enzyme b and the kinase a become linked, and an enzyme c is created (changes are
highlighted in green). A is strictly below B in the change order. It has the same precondition
(JDynKA = JDynKB), but c is not in dom(A) (dom(A) ⊆ dom(B)). On the remaining elements,
static interpretations are the same (JStatKA = JStatKB � dom(A)). Finally it contains strictly
fewer changes (J∆AKA ⊆ J∆AKB for all A ∈ Dyn); indeed the a–b link still appears, but no
enzyme is created. Importantly, A contains no additional change.

Formally, the “creation” of c displayed at the top of figure 3.1 is a representation of c /∈ JAKB
for all A ∈ Dyn and c ∈ JA?KB for some A? ∈ Dyn?, typically Has?. It is possible for c to not be
in dom(A) precisely because c does not appear anywhere in the interpretation of Dyn.

In addition, note that support enforces some degree of coherence : since every element is in
the interpretation of Has or of Has?, no element is a “ghost”, formally present, but that could be
removed by going down the change order E even though the strictly smaller model would have
no fewer changes than the larger one.

�
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Lemma 3.1.1. E is a partial order

Proof. Reflexivity and transitivity are trivial. For antisymmetry, assume A E B and B E A. We
immediately have JDynKA = JDynKB as well as JStatKA = JStatKB and dom(A) = dom(B). We
just need JDyn?KA = JDyn?KB. For every A ∈ Dyn, JA?KA = JA?KB is given by J∆AKA = J∆AKB,
JAKA = JAKB, and simple set-theoretic considerations. So A = B.

3.2. First-order logic on transitions, ↓

In this section we introduce FO[↓], which is first-order logic augmented with a E-minimising
unary operator, ↓. Remember that E orders transitions according to how much change they
contain.

We start with first-order logic with equality (FO) on the signature Θ. Here are some examples
of FO formulas on transitions:

Examples.
¬Has(x)∧ Has?(x) x appears
∃y. Link(x,y)∧ (On(y)↔ On(x)) some y is linked to x, x is On iff y is
∀x. Off(x)→ ∀y. ¬Link(x,y) Any Off element is free

�

3.2.1. Minimisation (↓)

To talk about the change order defined earlier, we introduce a unary operator ↓. Its intended
meaning is precisely : all observations have been accounted for. Going back to figure 3.1, note that
both A and B are models of F. But we would like only A to be a model of ↓F, not B.

We extend first-order logic with equality to FO[↓], where ↓ is a unary logical constant whose
semantics are defined by induction on the structure of φ.

Definition (↓). If φ ∈ FO[↓], A : Θ and µ : 〈φ〉 → dom(A):

A,µ �↓φ

A,µ � φ and B,µ 2 φ for all B C A such that Im(µ) ⊆ dom(B)

�

↓φ is pronounced “min φ”.
From now on (and until we explicitly move to 2nd order logic in section 7.1), “a formula”

means “a Θ-formula over FO[↓]”.

3.2.2. FO[↓] generalities

In this section we informally clarify logic notions. An FO[↓] formula is built from terms, atoms,
and the usual ∧,∨,¬,∀,∃ and ↓. The satisfaction relation is defined on non-empty structures
only.

Notation (Literal sets). If Σ is a signature, LΣ is the set of Σ-literals, and L=
Σ the union of all

equality literals and LΣ. �
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Notation (Free variables). If ϑ is a term, a set of terms, or a formula, 〈ϑ〉 is the set of free
variables in ϑ.

If we write φ(x1, . . . , xn), we mean that 〈φ〉 ⊆ {x1, . . . xn}. �

Notation (Quantifier closure). If φ is a formula, ∃φ is the existential closure of φ and ∀φ is its
universal closure. �

Notation (Quantifier rank). If φ is a formula, ‖φ‖ is the quantifier rank of φ. �

Convention. We assume that variables are always fresh. We reuse names such as x,y, . . . etc to
make reading easier, but name capture only happens through binders such as ∀ x or explicitly
when variables are surfaced as arguments of formulas, such as in φ1(x)∧φ2(x). �

Definition (Semantic bracket). We use the semantic bracket for formulas and terms, e.g. JφK is
the set of pairs (A,µ) with µ : 〈φ〉 → dom(A) such that A,µ � φ. With 〈φ〉 = x1, . . . xn (we assume
some ordering on variables), JφKA is the set of n-tuples (a1, . . . ,an) of elements of dom(A) such
that A, x1 7→ a1 . . . xn 7→ an � φ.

If t is a term and µ : 〈t〉 → dom(A), JtKA,µ is the interpretation of t in A,µ defined by induction
on the structure of t. �

Guards

Definition (Guards). If x 6= y, a guard α(x,y) is a binary atom (including “=”) where both x and
y occur. �

Note that unlike with the notation φ(x,y), α(x,y) means that x and y occur in the guard. The
order is not specified, and the arguments of the underlying atom can be any terms over x and y.

Lemma 3.2.1. If A : Θ, t(x) is a term over a variable x, u(y) is a term over a variable y, A(t,u) is
a binary atom over terms t and u, and A,µ � A(t,u) then δA(µ(x),µ(y)) 6 1.

Proof. Let a = JtKA,µ and b = JuKA,µ. By assumption δA(a,b) 6 1. By definition of δA,
δA(a,µ(x)) = 0 and δA(b,µ(y)) = 0. So δA(µ(x),µ(y) 6 1.

3.2.3. FO[↓] on transitions

A simple syntactic change can shift all the constraints expressed by a formula towards either the
precondition or the postcondition of its models. Consider φ(x) Active(x)∨ Active?(x). φ(x)
requires that x is active at least at some point during the transition. However the starred version
of φ, φ?(x) Active?(x)∨ Active?(x), requires x to be active in the postcondition;

Definition (Starred and unstarred formulas). If φ is a formula, φ? is φ with every symbol from
Dyn replaced with its counterpart from Dyn?. Conversely, φ◦ is φ with every symbol from
Dyn? replaced with its counterpart from Dyn?. �

Formulas may mention symbols in Stat, Dyn and Dyn?. A formula which does not mention
symbols in Dyn is not talking about the precondition of its models. A formula which avoids
Dyn? ignores the postcondition of its models.

If φ = φ?, then φ is a post formula. If φ = φ◦, it is a pre formula.

Convention. If φ is a pre, FO formula and S : Θ◦, we freely talk about the semantics in φ in S

by taking φ to be a formula in the language of Θ◦. �
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3.2.4. Runs on formulas

Definition (Runs on formulas). Continuing an earlier definition (p.30), if φ is a formula, the
runs of φ are the runs of J∃φK. We abuse notation and write ρ(φ) for ρ(J∃φK). Similarly, if
S : Θ◦ we write ρS(φ) for ρS(J∃φK). �

3.2.5. FO characterisation of support and strong support

Recall that a supported transition A has its domain covered by JHasKA ∪ JHas?KA. Supported
transitions can be characterized by a universal sentence:

Definition (Support). The formula Support ∀x. Has(x)∨ Has?(x) characterizes supported tran-
sitions (no proof needed). �

Moreover, strongly supported transitions are supported and the interpretations of Has and
Has? are 0-closed, which can also be characterized by a universal sentence:

Definition (Support0). Let

Has0 ∀x. Has(x)↔
∧

h∈Statfun

Has(h(x))

Support0 Support ∧ Has0 ∧ Has?0

The formula Support0 characterizes strongly supported structures (no proof needed).
If φ is any formula:

φS0 φ∧ Support0

�

3.3. Context-freeness & Retractability

A note on runs and executions We start with a note on the difference between ρ and exec to
motivate the existence of each notion.

Suppose we start with a definition of what happens given a set of rewrite rules rules and a
starting state M. This execution semantics execM(rules) is based on an operational pushout
construction.

Now suppose there is some algorithm which, given a formula φ and a set of patterns Pφ
induced by φ, yields the rules rulesPφ . To evaluate the correctness of the rules, a reasonable
criterion could be

The rewrite steps allowed by rulesPφ are the models of φ.

But that would restrict φ too much. To widen the set of acceptable formulas, we choose to
weaken the criterion to

Modulo a “nice” starting state, the rewrite steps allowed by rulesPφ are the models of φ.

This naturally leads to defining, in addition to the transition semantics JφK, the run semantics
ρM(φ) that describe exactly the traces with starting state M composed of models of φ.

So exec is an idealised execution method working on an input rules. To define the correctness
of exec when given some rules induced by a formula φ, we defined a notion of execution purely
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3. Execution of change-minimal specifications

in terms of the formula. Now we have a framework to evaluate transformations from formulas to
sets of rewrite rules.

Starting state aside, to connect ρ(φ) and exec(rulesPφ), we will go through the patterns Pφ.
In the past chapter, we have shown when exec(rulesPφ) = ρ(Insts(Pφ)). Now, we will show
when ρ(Insts(Pφ)) = ρ(φ).

Context-freeness and retractability Equipped with a language for specifying transitions, we
move in this section to the relationship between pattern matches and satisfaction of a formula.
We define the dual notions of context-freeness and retractability. The first transports satisfiability
forward along a match arrow, the other backward. We then introduce a set of deduction rules,
∗̀, such that ∗̀-provable formulas are both context-free and retractable. Those rules act as a

“typing mechanism” for the formulas.
In chapter 2 we described how to relate executions on rules derived from a set of pattern P to

the runs on instances of those patterns. In the previous section, we described runs on models
of formulas. This section is a first step towards connecting runs on formulas and runs derived
from pattern instances.

We need a brief definition, then we continue with the explanations:

Figure 3.2.: A canonical pattern. A is in full outline. B
∆,µ
A (d) is in dashed outline. The ball

encompasses a radius of d around both the image of µ and elements in J∆KA.

Canonical patterns To construct canonical patterns given a formula φ and d > 0, we take all
models A of φ that do not go beyond a radius d+ 1 around:

• The interpretation of the variables that made A satisfy φ.

• The changing elements of A, that is the elements a ∈ J∆KA.

For each of those, the application condition is the ball of radius d around those same elements.
So as illustrated in figure 3.2, the application condition leaves a ring of radius 1 around the
edges of the model.

Notation. If A : Θ, µ is a function into dom(A) and d > 0,

B
∆,µ
A (d) BA(J∆KA ∪ Im(µ),d)

�
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3.3. Context-freeness & Retractability

Definition (Canonical patterns P(φ,d)). If φ is a formula and d > 0, the canonical patterns
P(φ,d) are the patterns of the form (A,B∆,µ

A (d)) such that dom(A) = B
∆,µ
A (d+ 1) and A,µ �

φ. �

Relationship betwen instances of canonical patterns and models Our goal is to find out when
the runs associated with a formula are equal to the executions associated with some set of rules.
Under the right conditions, we will show that for a formula φ and a starting state M0, the right
set of rules is

rules(P(φ, ‖φ‖))

and obtain the following equality:

ρM0
(φ) = execM0

(rules(P(φ, ‖φ‖))

From the previous chapter, we know conditions where, for P a set of patterns,

ρM0
(Insts(P)) = execM0

(rules(P))

Let P = P(φ, ‖φ‖). All we need to complete the equality is

ρM(φ) = ρM(Insts(P(φ, ‖φ‖)))

On the left-hand side, the runs are directly built from the models of the formula. On the
right-hand side, we start by only looking at some models of the formula, then turn these models
into patterns, then generate all possible instances of those patterns and build runs from those
instances.

We will need the following two properties:

1. For the inclusion ρM(φ) ⊆ ρM(Insts(P(φ, ‖φ‖))), we want any model of φ to be an instance
of some pattern in P(φ, ‖φ‖). The solution will be, given a transition A, to construct a
pattern p and deduce p ∈ P(φ, ‖φ‖) from the fact that A satisfies φ.

2. For the inclusion ρM(φ) ⊇ ρM(Insts(P(φ, ‖φ‖))), we want enough instances of P(φ, ‖φ‖)
to be models of φ. The solution will be, given a pattern p with an instance A and some
side-conditions, to deduce that A satisfies φ from the fact that p ∈ P(φ, ‖φ‖).

Recall the following general fact: purely existential formulas are preserved by embeddings,
and purely universal ones are preserved by retraction along embeddings. See figure 3.3 for an
illustration in our setting. We will define two parameterised sets: context-free and retractable
formulas. If (A,K) is a pattern and m : (A,K) → B, A may satisfy φ but B may not (and
vice-versa). Both directions are important: if a transition B is part of a run in ρM(φ), it will
be in a run of ρM(Insts(P(φ, ‖φ‖))) only if some pattern from P(φ, ‖φ‖) can instantiate to it.
If φ is retractable, it will be satisfied by a pattern of the right shape. In the other direction, a
transition A part of a run induced by pattern instances will be in ρM(φ) only if it satisfies φ. If
φ is context-free, it will be satisfied by A.

In the next section, we will study the dual notions of context-freeness and retractability,
defined on formulas, which correspond to maintaining satisfiability by going forwards or
backwards along a match, modulo a proviso on the precondition of the match target. We will
introduce a first system of rules, ∗̀, which acts as a “typing” for formulas: ∗̀-provable formulas
are both context-free and retractable.
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3. Execution of change-minimal specifications

Figure 3.3.: A match and two formulas

After that, there will still be some work left to do: the proviso which guarantees preservation
of satisfaction needs to be true for all the elements of a run. We will introduce a restriction of
the rules of ∗̀, which we call ρ̀. For ρ̀-provable formulas, the truth or falsity of the proviso is
invariant along runs. So we will show how, modulo some side conditions, a ρ̀-provable formula
φ induces the same runs as the instances of its canonical patterns.

3.3.1. Context-free, retractable formulas

Both notions of context-free and retractable use the following definition. The idea is that the
target of a function f may need to verify some proviso outside of the image of f, on its precondition,
but the image itself may be dispensed from verifying the proviso.
Definition (Validity in image complement). For any structure B, function f that maps to dom(B)

and any formula I, we write B � ∀(I∨ f) to mean that for all ν : 〈I〉 → dom(B), Im(ν) ⊆ Im(f) or
B,ν � I. �

Given a radius d, a proviso I, two transitions A,B and a particular application condition
K. Suppose m : (A,K) → B, and suppose B satisfies I at least outside of the image of m.
Then φ being (I,d)-context-free means that m transports φ-satisfaction forwards, and φ being
(I,d)-retractable means that m transports it backwards.
Definition (Context-freeness). If φ is a formula, I is a pre formula, and d > 0, φ is (I,d)-context-
free if for all A,B and m : (A,B∆,µ

A (d))→ B, if A,µ � φ and B � ∀(I∨m) then B,m ◦ µ |= φ. �

Any suitable d is a context radius of (φ, I).
Definition (Retractability). If φ is a formula, I is a pre formula I, d > 0, φ is (I,d)-retractable if
for all A,B,µ : 〈φ〉 → dom(A) and m : (A,B∆,µ

A (d)) → B, if B,m ◦ µ � φ and B � ∀(I∨m) then
A,µ � φ. �

Any suitable d is a retraction radius of (φ, I).
We informally rephrase context-free and retractable in plain english. For some parameters

(I,d) and µ, consider any “safe enough” match m from some A to some B, namely:

a) m transports a d-radius ball containing Im(µ) and the changes in A to B

b) any tuple from B fully outside of Im(m) satisfies the precondition I.

Then:

• φ is context-free if A,µ � φ implies B,m ◦ µ � φ

• φ is retractable if B,m ◦ µ � φ implies A,µ � φ
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3.3. Context-freeness & Retractability

Example. Consider the formulas from figure 3.3. ∀x. E(x) is not context-free for any (I,d), but it
is (>, 0)-retractable. Conversely, ∃x. K(x) is not retractable for any (I,d) but it is (>, 0)-context-
free. �

Good clauses

We will soon introduce rules that can build context-free and retractable formulas. Before that
we need to define a class of clauses: good clauses. A refinement of good clauses, called great
clauses, will come into play later.

Definition (Subliterals of a clause). In a clause C =
∨
16i6n Li, let LDyn(C) be the set of literals

of C that use a symbol from Dyn, and L?
Dyn(C) be the set of literals of C that use a symbol from

Dyn?. �

Definition (Graph of a clause). Let GC be the undirected graph with vertices 〈C〉, and an edge
{x,y} iff there is ¬Link(t,u) or ¬Link?(t,u) in C such that {〈t〉, 〈u〉} = {x,y}. �

Definition (Good clause). A clause C is good if L?
Dyn(C) nonempty implies GC connected. �

Example. The clause A(x)∨ Link(x,y) is good. The clause A?(x)∨ Link(x,y) is not good. The
clause A?(x)∨¬Link(x,y) is good. �

Rules ∗̀ and first theorem

The rest of this subsection displays the rules ∗̀ and states the main theorem of this section.
Then, we list each pair of lemmas that proves the correctness of each rules and conclude with
the main proof of the theorem.

In a sequent Γ ∗̀ φ, Γ is a set of clauses C1, . . . ,Ck and φ is a formula. The rules ∗̀ are an
intermediate step towards the rules that actually guarantee correct execution. The asterisk ∗ is a
little training wheel that will come off eventually.

literal∗
∗̀ L C good clause∗

C◦ ∗̀ ∀C

Γ1 ∗̀ φ1 Γ2 ∗̀ φ2
disj∗

Γ1, Γ2 ∗̀ φ1 ∨φ2
Γ1 ∗̀ φ1 Γ2 ∗̀ φ2

conj∗
Γ1, Γ2 ∗̀ φ1 ∧φ2

Γ ∗̀ φ ∀guard∗
Γ ∗̀ ∀x. α(x,y)→ φ

Γ ∗̀ φ ∃guard∗
Γ ∗̀ ∃x. α(x,y)∧φ

Γ ∗̀ φ
circum∗

Γ ∗̀ ↓(φ∧ Support)

Notation (Clause set to formula). If Γ = C1, . . . ,Ck is a set of clauses,
∧
Γ =

∧
16i6k Ci. �

The theorem to prove is:

Theorem 3.3.22. If Γ ∗̀ φ then φ is (
∧
Γ ∧ Has, ‖φ‖)-context-free and retractable.

The proof will be found in section 3.3.3.
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3.3.2. Building context-free and retractable formulas

Weakening

The weakening says that what works with a certain “protection radius” and certain proviso
works with a larger radius and an even stronger proviso.

The proofs up to paragraph Context-free clauses are routine and can be found in the
appendix, section A.1. Skip to page 43 for the more interesting part.

Lemma 3.3.1. If φ is (I,d)-context-free then φ is (I ′,d ′)-context-free for any d ′ > d, I ′ � I.

Lemma 3.3.2. If φ is (I,d)-retractable then φ is (I ′,d ′)-retractable for any d ′ > d, I ′ � I.

There is no need for an explicit weakening rule in ∗̀ since disj∗ and conj∗ are multiplicative.

Quantifier-free formulas

Lemma 3.3.3. A quantifier-free formula φ is (>, 0)-context-free.

Lemma 3.3.4. A quantifier-free formula φ is (>, 0)-retractable.

Boolean composition

Lemma 3.3.5. If φ1 is (I,d1)-context-free (resp. retractable) and φ2 is (I,d2)-context-free (resp.
retractable) then φ1 ∧φ2 is (I, max(d1,d2))-context-free (resp. retractable).

Lemma 3.3.6. If φ1 is (I,d1)-context-free (resp. retractable) and φ2 is (I,d2)-context-free (resp.
retractable) then φ1 ∨φ2 is (I, max(d1,d2))-context-free (resp. retractable).

Universal quantification

Lemma 3.3.7. If φ is (I,d)-context-free and α(x,y) is a guard, then ∀x. α(x,y)→ φ is (I,d+ 1)-
context-free.

Lemma 3.3.8. If φ is (I,d)-retractable then for any x, ∀x. φ is (I,d)-retractable.

Existential quantification

Lemma 3.3.9. If φ is (I,d)-context-free then for any x, ∃x. φ is (I,d)-retractable.

Lemma 3.3.10. If φ is (I,d)-retractable and α(x,y) is a guard then ∃x. α(x,y)∧φ is (I,d+ 1)-
retractable.
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Context-free clauses

The main difficulty is the clause∗ rule for the context-free part. To transport a universal
constraint forward along a morphism, we do need to some conditions to hold on the destination.

The following lemma simply rephrases the definition of J∆K as the changes of a transition by
asserting that things outside of J∆K do not change indeed.

Lemma 3.3.11. If L(t,u) is a pre literal (t = u if L unary) and A,µ is such that δA(J〈t〉KA,µ, J∆KA) >
0 then A,µ � L(t,u)↔ L?(t,u).

Proof. Let S be the symbol used in L(t,u). If S /∈ Dyn, L(t,u) = L?(t,u) so we are done.
Otherwise, since δA(J〈t〉KA,µ, J∆KA) > 0, we have δA(JtKA,µ, J∆KA) > 0. Since A,µ � ∆L(t,u)
implies JtKA,µ ∈ J∆KA, we are done.

The following lemma gives a key property of good clauses. Consider GC. Assuming it is
connected, C can only be false when the interpretation of 〈C〉 fits in a small enough ball.

Lemma 3.3.12. If C is a clause such that GC is connected and A,µ is such that A,µ 2 L for every
literal L ∈ C of the form ¬Link(t,u) or ¬Link?(t,u) then dA(a,b) < |µ(〈C〉)| for every a,b ∈ µ(〈C〉).

Proof. Let G be the undirected graph with vertices µ(〈C〉) and an edge {a,b} whenever dA(a,b) 6
1. By assumption, GC is connected. We show that G is connected for any two a,b ∈ G by
induction on δGC

(µ−1(a),µ−1(b)).
If the distance is 0, then a = b and we are done. Otherwise, there is y such that δGC

(µ−1(a),y) =
k, δGC

(y,µ−1(b)) = 1 and by induction hypothesis, there is a path in G from a to µ(y). Now
by definition of GC, A,µ � Link(t,u)∨ Link?(t,u) with {〈t〉, 〈u〉} = {y,m−1(b)}. So dA(µ(y),b) 6 1.
So there is a path from a to b in G. So G is connected, so its diameter is 6 |µ(〈C〉)|.

This lemma gives a simple consequence of the definition of a match: in a match, changes in
the target have a preimage in the changes of the source.

Lemma 3.3.13. If m : (A,K)→ B, then J∆KB ⊆ m(J∆KA).

Proof. For every A ∈ Dyn, every b ∈ J∆AKB and every b ∈ b, b ∈ J∆KB. So b ∈ m(A)

by definition of a match. So m−1(b) is well-defined. So by definition of an embedding,
m−1(b) ∈ J∆AKA.

The following lemma explains the importance of good clauses and the presence of a proviso
in the definition of context-free. By default, universal formulas are very much not context-free –
the new context might betray the universal specification. Here we see that for a good clause, it
is enough to check that the match target satisfies the pre version of the clause. Note that the
context around the image of a match contains no changes, so it should be enough to know
that the pre version of the clause is satisfied. The |〈C〉| radius makes sure that the new context
doesn’t come too close to the changes (which are all defined by the domain of the match).

Lemma 3.3.14. If C is good and ∀x. C is a sentence, ∀x. C is (C◦, |〈C〉|− 1)-context-free.

Proof. Let d |〈C〉|. Take any A,B,m : (A,B∆,∅
A (d− 1)) → B such that A � ∀x. C, and for all

ν : 〈C◦〉 → dom(B), Im(ν) ⊆ m(A) or B,ν � C◦. We want B � ∀x. C.
Let η : 〈C〉 → dom(B). If Im(η) ⊆ m(A), let µ m−1 ◦ η. By assumption, A,µ � C. Since C is

quantifier-free and m is an embedding, B,η � C and we are done.
Otherwise there is a ∈ Im(η) \m(A). Moreover 〈C〉 = 〈C◦〉 (trivially), so η : 〈C◦〉 → dom(B). So

by assumption on A,B,m and η, B,η � C◦.
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If L?
Dyn(C) is empty, then C = C◦ and we are done.

Otherwise, by definition of good, GC is connected. We get the following inclusions by the
lemmas indicated below:

BB(J∆KB,d) ⊆
lemma 3.3.13

BB(m(J∆KA),d) ⊆
lemma 2.4.5

m(A)

Since a /∈ m(A), δB(a, J∆KB) > d.
If there is a literal L in C of the form ¬Link?(t,u) or ¬Link(t,u) such that B,η � L, then B,η � C

and we are done.
If there is no such L then by lemma 3.3.12 dB(b,b ′) < |Im(η)| 6 |〈C〉| = d for every b,b ′ ∈ Im(η).

Since δB(a, J∆KB) > d, we get δB(b, J∆KB) > 0 for every b ∈ Im(η). Consider any L in C such
that B,η � L◦ (by assumption, there is at least one).

If L is not a post literal, then L◦ = L so B,η � C.
Otherwise, since GC is connected, we apply lemma 3.3.11 and get B,η � L, so B,η � C.

Example. In figure 3.4, we illustrate good clauses with an example of a match between two
structures A and B. A satisfies F1 ∀x. On(x)∨ Active?(x). We explain why B does as well.

By clause∗, On(x)∨ Active(x) ∗̀ F1. So by lemma 3.3.14, F1 is (On ∨ Active, 0)-context-free.
Note that A, x 7→ a 2 On(x)∨ Active(x), yet A � F1. The elements of dom(B) that are not in
dom(A) do satisfy On(x)∨ Active(x). Crucially, b is not involved in a change, and thus is still
Active in the postcondition. Thus, we get B � F1. Generally speaking, in the rule clause∗,
having C be good ensures that, if a tuple satisfies C◦ and is not involved in a change, then it
satisfies C. �

Figure 3.4.: A and B satisfy F1 ∀x. On(x)∨ Active?(x). Changes highlighted in green.

Example. In figure 3.5, we see a more complex example. The transition A vacuously satisfies the
formula F2 ∀xy. Link(x,y)→ E(x)→ On?(x) (with E ∈ Stat). The match idA : (A,B∆,∅

A (1))→ B

ensures B � F2 provided B,µ � Link(x,y)→ E(x)→ On(x) whenever Im(µ) * Im(idA). a gains
an edge (through the match, not during the transition) and is allowed to since it is not in
J∆KA. The proviso only requires a ∈ JOnKA: since a is not involved in a change, that implies
a ∈ JOn?KA. However b is involved in a change, and thus cannot become linked through the
match. �

Minimisation

We are in FO[↓], not just FO, so we must study how to build context-free and retractable
minimised formulas. Here is the main idea, informally: suppose φ is both context-free and
retractable. Is ↓φ context-free?
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Figure 3.5.: A and B satisfy F2 ∀xy. Link(x,y)→ E(x)→ On?(x)

Take some m : (A,K)→ B. We know A �↓φ, so (modulo a proviso and some facts about K)
B � φ. The hard question is: is B minimal among models φ?

Suppose it is not, that is: suppose there is B ′ C B such that B ′ � φ. Lemma 3.3.18 will
show that under the right circumstances, we can build a transition A ′ C A such that there is a
“nice” match from A ′ to B ′. Now, since we supposed that φ was not only context-free but also
retractable, B ′ � φ yields A ′ � φ, which contradicts the minimality of A among models of φ.
That reasoning made precise can be found in lemma 3.3.19.

There is also a technical requirement that we only consider supported models, due to the
definition of E. An alternative design (but with fairly wide-ranging consequences) would be to
remove the dom(A) ⊆ dom(B) in the definition of A E B.

The same reasoning works if one asks whether ↓φ is retractable, as shown in lemmas 3.3.20

and 3.3.21.
The following lemma simply rests on the fact that the change order cannot touch preconditions,

so pre formulas are not affected by it.

Lemma 3.3.15. If ψ is a pre, quantifier-free formula, A E B and ν : 〈ψ〉 → dom(A), then A,ν � ψ
iff B,ν � ψ.

Proof. Trivial induction on the structure of ψ, base cases for atoms use the fact that, by definition
of E, JDynKA = JDynKB and JStatKA = JStatKB � dom(A).

This lemma gives an immediate consequence of the fact that Has(x)∨ Has?(x) is good. This is
an ad hoc proof of something ∗̀ is designed to prove, but we need it before we can prove all of
∗̀ correct.

Lemma 3.3.16. If φ is (I,d)-context-free (resp. (I,d)-retractable), then φ∧ Support is (I∧ Has,d)-
context-free (resp. (I∧ Has,d)-retractable).

Proof. For retractable, lemmas 3.3.4, 3.3.8 and 3.3.2 immediately give the conclusion. For context-
free, we note that Has(x)∨ Has?(x) is good and |〈Has(x)∨ Has?(x)〉| = 1. For context-free, by
lemma 3.3.14, Support is (Has, 0)-context-free. By lemmas 3.3.5 and 3.3.1, we are done.

This simple lemma gives another way to state the effect of application conditions on 0-
embeddings.

Lemma 3.3.17. If m : (A,K)→ B, A ∈ Dyn, b ∈ JAKB, and b ∈ m(K) for some b ∈ b then there
is a ∈ JAKA such that m(a) = b.

Proof. If b ∈ m(K) then by definition of a match and dB(b,b ′) 6 1 for every b ′ ∈ b, m−1(b) is
well-defined. So by definition of an embedding, m−1(b) ∈ JAKA.

We now move to the main lemmas for proving that minimisation does not impact context-
freeness and retractability. Illustrations are included.
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Figure 3.6.: Illustration of the statement of lemma 3.3.18

Context-freeness of ↓φ This next pair of lemmas shows how to obtain context-freeness of ↓φ
from both retractability and context-freeness of φ. Figure 3.6 illustrates the first one.

Lemma 3.3.18. If B : Θ is supported, B ′ C B, A : Θ, µ : X → dom(A) for X some set of
variables, and m : (A,B∆,µ

A (d)) → B such that m(µ(X)) ⊆ dom(B ′), then there are A ′ and
m ′ : (A ′,B∆,µ

A ′ (d))→ B ′ such that A ′ C A and m ′ = m � m−1(B ′).

Proof. We start by defining A ′.

dom(A ′) dom(A) \m−1(dom(B) \ dom(B ′))

JAKA ′ JAKA for all A ∈ Dyn
JTKA ′ JTKA � dom(A ′) for all T ∈ Stat

J∆AKA ′ J∆AKA \m−1(J∆AKB \ J∆AKB ′) for all A ∈ Dyn

We show that A ′ is well-defined, i.e. that the above definitions induce a single structure and
that the domain covers the elements mentioned in the relations.

• The definitions for every A ∈ Dyn of JAKA ′ and J∆AKA ′ induce

JA?KA ′ = (J∆AKA ′ \ JAKA ′)∪ (JAKA ′ \ J∆AKA ′)

• Suppose there is a ∈ JAKA ′ . a ∈ JAKA by definition of E. m(a) ∈ JAKB by definition of an
embedding. m(a) ∈ JAKB ′ by definition of JAKB ′ . So for every a ∈ a, m(a) ∈ dom(B ′),
and thus by definiton of dom(A ′), a ∈ dom(A ′).

• Suppose there is a ∈ JA?KA ′ . Wlog a /∈ JAKA ′ (see previous case), so a ∈ J∆AKA ′ .
a ∈ J∆AKA by definition of E. m(a) ∈ J∆AKB by definition of an embedding. So, by
definition of J∆AKA ′ , m(a) ∈ J∆AKB ′ . So a ∈ dom(B ′) for every a ∈ a, and thus by
definition of dom(A ′), a ∈ dom(A ′).

• The case a ∈ JTKB ′ is trivial.

Now we show A ′ C A. By definition A ′ E A. Moreover B ′ C B, so J∆AKB ′ ⊂ J∆AKB for some
A ∈ Dyn or dom(B ′) ⊂ dom(B).

• If there is b ∈ dom(B) \ dom(B ′), by definition of C we have b /∈ JHasKB. Since B is
supported, b ∈ J∆HasKB, and so by lemma 3.3.13 there is a ∈ J∆HasKA such that m(a) = b.
So by definition of dom(A ′), a /∈ dom(A ′) and thus A ′ C A.
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• If there is b ∈ J∆AKB \ J∆AKB ′ for some A ∈ Dyn, by lemma 3.3.13 there is a ∈ J∆AKA
such that m(a) = b. By definition of J∆AKA ′ , a /∈ J∆AKA ′ and thus A ′ C A.

With m ′ = m � m−1(B ′), we need m ′ : (A ′,B∆,µ
A (d)) → B ′, i.e. that m−1(B ′) = dom(A ′),

µ(X) ⊆ dom(A ′), that m is an embedding, that BB ′(m
′(B∆,µ

A ′ (d)), 1) ⊆ m
′(A ′) and that J∆KB ′ ⊆

m ′(A ′).

• We show m−1(B ′) = dom(A ′). If a ∈ m−1(B ′) then m(a) ∈ m(A), so by definition of
dom(A ′), a ∈ dom(A ′). In the other direction, if a ∈ dom(A ′) then a ∈ dom(A) as well by
definition of E, so a ∈ m−1(B). Thus by definition of dom(A ′), a ∈ m−1(B ′).

• µ(X) ⊆ dom(A ′) follows from m−1(B ′) ⊆ dom(A ′) and the assumption m(µ(X)) ⊆
dom(B ′).

• Since m is an embedding and by definition of A ′, m ′ : A ′ → B ′ is an embedding. To show
that it is a 0-embedding, it suffices to show that for all a ∈ dom(B ′), function symbol
h ∈ Stat, b ∈ Im(m ′) such that (a,b) ∈ JhKB ′ , we have a ∈ Im(m). By definition of B ′,
that premise implies δB(a,b) = 0, so, since m is a 0-embedding and m ′ is a restriction of
m, we get a ∈ Im(m).

• Let b ∈ dom(B ′) be at distance 1 (in B ′) from m ′(a) with a ∈ B
∆,µ
A ′ (d). Since J∆KA ′ ⊆ J∆KA

and by definition of m, b ∈ m(A). Suppose b /∈ dom(A ′): by definition of dom(A ′),
b /∈ dom(B ′). Absurd.

• Finally by J∆KB ′ ⊆ J∆KB and lemma 3.3.13, J∆KB ′ ⊆ m(J∆KA). It is easy to see that
J∆KA ′ = J∆KA \m−1(J∆KB \ J∆KB ′), so J∆KB ′ ⊆ m(J∆KA ′). Since dom(A ′) ⊆ m−1(B ′),
J∆KB ′ ⊆ m ′(J∆KA ′).

Recall the reasoning at the beginning of the minimisation paragraph above and keep in mind
figure 3.6, which summarises the previous lemma. We use the contrapositive of the previous
lemma to prove the next one.

Lemma 3.3.19. If φ is (I,dc)-context-free and (I,dr)-retractable, then ↓ (φ∧ Support) is (I∧

Has, max(dc,dr))-context-free.

Proof. Let dc be any context radius and dr be any retraction radius for φ, I, and let d
max(dc,dr). Consider A,B,µ : 〈φ〉 → dom(A) and m : (A,B∆,µ

A (d)) → B such that A,µ �↓
(φ∧ Support) and B � ∀((I∧ Has)∨m). We want B,m ◦ µ �↓ (φ∧ Support). Assume not. By
lemma 3.3.16, φ∧ Support is (I∧ Has,dc)-context-free. Since d > dc, by lemma 3.3.1 B,m ◦ µ �
φ∧ Support. So there is B ′ C B such that B ′,m ◦ µ � φ∧ Support.

Since B is supported and m ◦ µ maps to dom(B ′), by lemma 3.3.18, there is A ′ C A and
m ′ : (A ′,B∆,µ

A ′ (d)) → B ′ such that m � m−1(B ′) = m ′. We show A ′,µ � φ∧ Support, which
contradicts A,µ �↓(φ∧ Support):

Take any ν : 〈I∧ Has〉 → dom(B ′). Since I∧ Has is a pre, quantifier free formula and B ′ E B,
by lemma 3.3.15 B,ν � I∧Has implies B ′,ν � I∧Has. Otherwise, by assumption Im(ν) ⊆ Im(m).
Since Im(ν) ⊆ dom(B ′), Im(ν) ⊆ Im(m � m−1(B ′)) = m ′(A ′). So B ′ � ∀((I∧ Has)∨m ′). By
lemma 3.3.16, φ∧ Support is (I∧ Has,dr)-retractable. Since d > dr, by lemma 3.3.2 we get
A ′,µ � φ∧ Support.
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3. Execution of change-minimal specifications

Figure 3.7.: Illustration of the statement of lemma 3.3.20

Retractability of ↓φ This next pair of lemmas shows how to obtain retractability of ↓φ from
both retractability and context-freeness of φ. Figure 3.7 illustrates the first one.

Lemma 3.3.20. If A : Θ is supported, A ′ C A, B : Θ, µ : X→ dom(A ′) for X some set of variables,
and m : (A,B∆,µ

A (d))→ B, then there are B ′ and m ′ : (A ′,B∆,µ
A ′ (d))→ B ′ such that B ′ C B and

m ′ = m � m−1(B ′).

Proof. We start by defining B ′.

dom(B ′) dom(B) \m(dom(A) \ dom(A ′))

JAKB ′ JAKB for all A ∈ Dyn
JTKB ′ JTKB � dom(B ′) for all T ∈ Stat

J∆AKB ′ J∆AKB \m(J∆AKA \ J∆AKA ′) for all A ∈ Dyn

We show that B ′ is well-defined, i.e. that the above definitions induce a single structure and
that the domain covers the elements mentioned in the relations.

• The definitions for every A ∈ Dyn of JAKB ′ and J∆AKB ′ induce

JA?KB ′ = (J∆AKB ′ \ JAKB ′)∪ (JAKB ′ \ J∆AKB ′)

• Suppose there is b ∈ m(A) and b such that b ∈ b and b ∈ JAKB ′ . If m(a) = b for
some a ∈ JAKA, then m−1(b) ∈ dom(A ′) by definition of E. Otherwise by lemma 3.3.17

(taking the contrapositive) m−1(b) /∈ B
∆,µ
A (d). So m−1(b) /∈ J∆KA. Since A is supported,

m−1(b) ∈ JHasKA, and so m−1(b) ∈ dom(A ′) by definition of E.

• Suppose that for some b ∈ m(A), b ∈ b ∈ JA?KB ′ . Wlog b /∈ JAKB ′ (see previous case). So
b ∈ J∆AKB ′ . By lemma 3.3.13, b ∈ m(J∆AKA). So by definition of J∆AKB ′ , b ∈ m(J∆AKA ′).
So b ∈ m(A ′).

• The case b ∈ JTKB ′ is trivial.

Now we show B ′ C B. By definition B ′ E B. Moreover A ′ C A, so J∆AKA ′ ⊂ J∆AKA for some
A ∈ Dyn or dom(A ′) ⊂ dom(A). In any case B ′ C B.

Finally we show m � m−1(B ′) : (A ′,B∆,µ
A (d))→ B ′.

With m ′ = m � m−1(B ′), we need m ′ : (A ′,B∆,µ
A (d)) → B ′, i.e. that m−1(B ′) = dom(A ′),

that µ(X) ⊆ dom(A ′), that m is an embedding, that BB ′(m
′(B∆,µ

A ′ (d)), 1) ⊆ m ′(A ′) and that
J∆KB ′ ⊆ m ′(A ′).
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3.3. Context-freeness & Retractability

• We show m−1(B ′) = dom(A ′). If a ∈ m−1(B ′) then m(a) ∈ m(A), and by definition
of dom(B ′), m(a) /∈ m(dom(A) \ dom(A ′)) so a ∈ dom(A ′). In the other direction, if
a ∈ dom(A ′) then a ∈ dom(A) as well by definition of E, so m(a) ∈ dom(B ′) by definition
of dom(B ′).

• µ(X) ⊆ dom(A ′) by assumption on A

• Since m is an embedding and by definition of B ′, m ′ : A ′ → B ′ is an embedding. To show
that it is a 0-embedding, it suffices to show that for all a ∈ dom(B ′), function symbol
h ∈ Stat, b ∈ Im(m ′) such that (a,b) ∈ JhKB ′ , we have a ∈ Im(m). By definition of B ′,
that premise implies δB(a,b) = 0, so, since m is a 0-embedding and m ′ is a restriction of
m, we get a ∈ Im(m).

• Let b ∈ dom(B ′) be at distance 1 (in B ′) from m ′(a) with a ∈ B
∆,µ
A ′ (d). Since J∆KA ′ ⊆ J∆KA

and by definition of m, b ∈ m(A). Suppose b /∈ dom(A ′): by definition of dom(B ′),
b /∈ dom(B ′). Absurd.

• Finally by J∆KB ′ ⊆ J∆KB and lemma 3.3.13, J∆KB ′ ⊆ m(J∆KA). It is easy to see that
J∆KB ′ = J∆KB \m(J∆KA \ J∆KA ′), so J∆KB ′ ⊆ m(J∆KA ′). Since dom(A ′) ⊆ m−1(B ′), J∆KB ′ ⊆
m ′(J∆KA ′).

Recall the reasoning at the beginning of the minimisation paragraph above and keep in mind
figure 3.7, which summarises the previous lemma. We use the contrapositive of the previous
lemma to prove the next one.

Lemma 3.3.21. If φ is (I,dc)-context-free and (I,dr)-retractable, then ↓ (φ∧ Support) is (I∧

Has, max(dc,dr))-retractable.

Proof. Let d max(dc,dr). Consider A, B,µ : 〈φ〉 → dom(A) and m : (A,B∆,µ
A (d)) → B such

that B,m ◦ µ �↓(φ∧ Support) and B � ∀((I∧ Has)∨m). We want A,µ �↓(φ∧ Support). Assume
not. By lemma 3.3.16, φ∧ Support is (I∧ Has,dr)-retractable. Since d > dr, by lemma 3.3.2
A,µ � φ∧ Support. So there is A ′ C A such that A ′,µ � φ∧ Support. Note that this implies
Im(µ) ⊆ dom(A ′).

Since A is supported, by lemma 3.3.20, there is B ′ C B and m ′ : (A ′,B∆,µ
A ′ (d)) → B ′ such

that m � m−1(B ′) = m ′. We show B ′,m ◦ µ � φ ∧ Support, which contradicts B,m ◦ µ �↓
(φ∧ Support):

Take any ν : 〈I∧ Has〉 → dom(B ′). Since I∧ Has is a pre, quantifier free formula and B ′ E B,
by lemma 3.3.15 B,ν � I∧Has implies B ′,ν � I∧Has. Otherwise, by assumption Im(ν) ⊆ Im(m).
Since Im(ν) ⊆ dom(B ′), Im(ν) ⊆ Im(m � m−1(B ′)) = m ′(A ′). So B ′ � ∀((I∧ Has)∨m ′). By
lemma 3.3.16, φ∧ Support is (I∧ Has,dc)-context-free. Since d > dc, by lemma 3.3.1 we get
B ′,m ′ ◦ µ � φ∧ Support.

Since m � m−1(B ′) = m ′ and Im(µ) ⊆ dom(A ′), m ◦ µ = m ′ ◦ µ, so B ′,m ◦ µ � φ.

3.3.3. Correctness of the ∗̀ rules

Theorem 3.3.22 is a direct consequence of the lemmas above.

Theorem 3.3.22. If Γ ∗̀ φ then φ is (
∧
Γ ∧ Has, ‖φ‖)-context-free and retractable.
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Proof. By induction on the derivation.

• literal∗: By lemmas 3.3.3 and 3.3.1 L is (Has, 0)-context-free, by lemmas 3.3.4 and 3.3.2 L
is (Has, 0)-retractable.

• clause∗: Lemma 3.3.14 together with the proviso on clause∗ implies that ∀C is (C◦, |〈C〉|−1)-
context-free. Since ‖∀C‖ > |〈C〉|− 1 (trivial), by lemma 3.3.1 ∀C is (C◦ ∧ Has, ‖∀C‖)-context-
free. ∀C is (C◦ ∧ Has, ‖∀C‖)-retractable by direct application of lemmas 3.3.4, 3.3.8 and
3.3.2.

• disj∗: By induction hypothesis each φi is (
∧
Γi ∧ Has, ‖φi‖)-context-free and retractable,

and ‖φ1∨φ2‖ = max(‖φ1‖, ‖φ2‖) so by lemmas 3.3.1, 3.3.2 and 3.3.6, φ1∨φ2 is (
∧
Γ1, Γ2∧

Has, ‖φ1 ∨φ2‖)-context-free and retractable.

• conj∗: By induction hypothesis each φi is (
∧
Γi ∧ Has, ‖φi‖)-context-free and retractable,

and ‖φ1∧φ2‖ = max(‖φ1‖, ‖φ2‖) so by lemmas 3.3.1, 3.3.2 and 3.3.5, φ1∨φ2 is (
∧
Γ1, Γ2∧

Has, ‖φ1 ∧φ2‖)-context-free and retractable.

• ∀guard∗: Let ψ ∀x. α(x,y) → φ. By induction hypothesis φ is (
∧
Γ ∧ Has, ‖φ‖)-context-

free and retractable.

For context-free: By lemma 3.3.7, and since ‖ψ‖ = ‖φ‖+ 1, ψ is (
∧
Γ ∧Has, ‖ψ‖)-context-free.

For retractable: Since ¬α(x,y) is quantifier-free, by lemmas 3.3.4, 3.3.2 and 3.3.6, α(x,y)→
φ is (

∧
Γ ∧ Has, ‖ψ‖)-retractable, so by lemma 3.3.8 so is ψ.

• ∃guard∗: Let ψ ∃x. α(x,y)∧φ. By induction hypothesis φ is (
∧
Γ ∧Has, ‖φ‖)-context-free

and retractable.

For retractable: By lemma 3.3.10, and since ‖ψ‖ = ‖φ‖+ 1, ψ is (
∧
Γ ∧ Has, ‖ψ‖)-retractable.

For context-free: Since α(x,y) is quantifier-free, by lemmas 3.3.3, 3.3.1 and 3.3.5, α(x,y)∧φ
is (

∧
Γ ∧ Has, ‖ψ‖)-context-free, so by lemma 3.3.9 so is ψ.

• circum∗: Let ψ ↓ (φ∧ Support). By induction hypothesis, φ is (
∧
Γ ∧ Has, ‖φ‖)-context-

free and retractable. By lemma 3.3.21, ψ is (
∧
Γ ∧ Has, ‖φ‖)-retractable (lemma 3.3.21 was

applied to
∧
Γ ∧ Has and we then rewrote

∧
Γ ∧ Has ∧ Has to

∧
Γ ∧ Has); since ‖ψ‖ > ‖φ‖, by

lemma 3.3.2 ψ is (
∧
Γ ∧ Has, ‖ψ‖)-retractable. Similarly, by lemmas 3.3.19 and 3.3.1, ψ is

(
∧
Γ ∧ Has, ‖ψ‖)-context-free.

We have defined a class of formulas which survive going through matches modulo some side
conditions. This is a good first step, but we need more: we need the side conditions themselves
to survive throughout entire runs. That will be the focus of the next section.

3.4. Runs of context-free and retractable formulas

In this section, we refine the deduction rules ∗̀ into ρ̀, which lets us prove the main theorem
of this chapter: if φ is ρ̀-provable and the starting state is “nice”, then the runs of the models
of φ are exactly the executions of the rules of the canonical patterns of φ. Recall that, by the
explanations in section 3.3 (page 39), we already have a correspondence between the execution
on a set of models and the denotational runs on a set of models. So it now suffices to show that
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3.4. Runs of context-free and retractable formulas

the runs of the instances of the canonical patterns of φ are exactly the executions of the rules of
of the canonical patterns of φ.

Context-freeness and retractability are defined modulo some formula I on the match target.
But this formula may not stay true at every step of the run. We start by refining good clauses to
great clauses, and we show why they help maintain that invariant I. Then we introduce the
deduction rules ρ̀, explain how ρ̀ is a restriction of ∗̀ and motivate the differences. Then we
state the main theorem before we go about proving it.

First, we give an overview of how that proof will go. Section 3.4.4 contains two key lemmas.

Runs on instances included in run on models Lemma 3.4.6 will use context-freeness, and asserts
that runs on pattern instances are included in runs on models of φ. The idea is: if φ is context-
free modulo some I which only requires checking a small enough area, and φ ensures I on the
postcondition (meaning φ ensures I?), then from a “nice” starting point M0 we:

1. Take the first transition A1 in a run on the instances of the canonical patterns of φ (so a
run in ρM0

(Insts(P))).

2. Because M0 is “nice”, the precondition of A1 satisfies I (modulo details).

3. The transition is an instance of a pattern (B1,K1) such that B satisfies φ (by definition).
So by context-freeness of φ, A1 satisfies φ as well.

4. Now that A1 satisfies φ, a run on the models of φ (so a run in ρM0
(φ)) can begin with A1.

5. Also, A1 satisfying φ means that its postcondition satisfies I (by assumption).

6. So the precondition of A2, the next transition in the run, also satisfies I (by definition of a
run).

7. Moreover, that next transition is also an instance of a pattern (B2,K2) such that (...)

8. And so on.

Runs on models included in run on instances Lemma 3.4.7 uses retractability, and asserts that
the runs on models of φ are included in runs on pattern instances. The idea is: if φ is retractable
modulo some I which only requires checking a small enough area, and φ ensures I on the
postcondition, then from a “nice” starting M0 point we:

1. Take the first transition A1 in a run on the models of φ (so a run in ρM0
(φ).

2. Because M0 is “nice”, the precondition of that transition satisfies I (modulo details).

3. We define a special pattern p1 which has a match into the A1. Since φ is retractable, the
first projection of p1 satisfies φ as well. Because p1 has a special shape, this means p1 is
one of the canonical patterns of φ.

4. Since A1 is an instance of p1, a run on the instances of canonical patterns of φ (so a run in
ρM0

(Insts(P))) can begin with A1.

5. We knew that A1 satisfies φ, so its postcondition satisfies I (by assumption).

6. So the precondition of A2, the next transition in the run, also satisfies I (by definition of a
run).
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7. Moreover, another special pattern p2 with a match into A2 can be constructed, and (...)

8. And so on.

3.4.1. Overview of the ρ̀ rules and main theorem

Figure 3.8.: B1 satisfies F1 while B2 does not. Changes highlighted in green.

Example. We show a ∗̀-provable formula which does not remain satisfied throughout a run
based on its canonical patterns.

Recall the formula F1 ∀x. On(x)∨ Active?(x) from figure 3.4. With C = On(x)∨ Active?(x),
we have C◦ ∗̀ F1. So F1 is (C◦, 0)-context-free and retractable.

Consider figure 3.8. It represents two transitions, B1,B2, where the interpretation in B1 of
Dyn? is equal to the interpretation in B2 ofDyn – that is, the middle column is the postcondition
of B1 and the precondition of B2. In addition, the identity is a match from A1 to B1 and from
A2 to B2. Each Ai is defined by a grey, dashed outline. Now consider:

• In B1, a ceases to be On. Shown in a dotted box is the transition A1. There is a match
idA1 : (A1,B∆,∅

A1
(0))→ B1. Since B1, x 7→ b � C◦ we obtain B1 � F1 (by context-freeness).

• In B2, b goes from being On to being Active. Shown in a dotted box is the transition A2.
There is a match idA2 : (A2,B∆,∅

A2
(0))→ B2. But B1, x 7→ a 2 C◦. And indeed: B1 2 F1.

The issue here is that B2, x 7→ a 2 C◦. Or, said differently, the issue is that B1, x 7→ a 2 C?.
With a an element of B1, a /∈ JOn?KB1 is fine. But the postcondition of B1 becomes the
precondition of B2, and a /∈ JOnKB2 is not fine.

As a result, while the run B1,B2 is not in ρ(F1), it is in ρ(Insts(P(F1, 1))).
Informally, our goal is now to find for which formulas we could deduce B1 � ∀C? from

B1 � F1. That way, the proviso C◦ will propagate the run B1,B2.
�

Great clauses

Great clauses are a restriction on good clauses.
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3.4. Runs of context-free and retractable formulas

Definition (Great clause). A clause C is great if LDyn(C) nonempty implies that there is some
L ∈ LDyn(C) such that L? ∈ L?

Dyn(C). and GC is connected. �

Of course, any great clause is also good.
The first condition (LDyn(C) nonempty implies some L ∈ LDyn(C) such that L? ∈ L?

Dyn(C))
solves the requirement outlined in the introduction of this section: if C depends on the precon-
dition at all, then C◦ is equivalent to >. So it becomes very easy for a precondition to satisfy
C◦.

The second condition (GC connected) is a technical requirement to fulfill the requirements
in the definition of context-free and retractable: the B � ∀(I∨ f) part of the definition needs
I(x1, . . . , xk) to be true by default when the interpretations for x1, . . . , xk are too far apart.
Example. The clause A(x)∨ Link(x,y) is good but not great. Same for A(x)∨¬Link(x,y): good
but not great. ¬A(x)∨ B(x)∨ A?(x) is great. ¬Link?(x,y) is great. �

Rules ρ̀

The rules ρ̀ are a restriction of ∗̀. The small ρ replaces the training wheel ∗ and should evoke
runs, because ρ̀-provable formulas will be well-behaved on runs.

literalρ
ρ̀ L C great

clauseρ
C◦ ρ̀ ∀C

Γ ρ̀ φ1 Γ ρ̀ φ2
disjρ

Γ ρ̀ φ1 ∨φ2

Γ1 ρ̀ φ1 Γ2 ρ̀ φ2
conjρ

Γ1, Γ2 ρ̀ φ1 ∧φ2

ρ̀ φ ∀guardρ
ρ̀ ∀x. α(x,y)→ φ

ρ̀ φ ∃guardρ
ρ̀ ∃x. α(x,y)∧φ

Γ ρ̀ φ
circumρ

Γ ρ̀↓(φ∧ Support)

Here are the differences between ∗̀ and ρ̀:

• The proviso of clauseρ is “C great” (it is “C good” in clause∗)

• disjρ is additive (disj∗ is multiplicative)

• The context in the premise of ∀guardρ and ∃guardρ must be ∅ (it can be any Γ in ∀guard∗
and ∃guard∗)

The move from good to great was explained earlier.
We give some intuition behind the move from a multiplicative disj∗ to an additive disjρ:

essentially, weakening does not hold in ρ̀ (while it does in ∗̀). One way to see it is that in ∗̀
the context Γ describes a sufficient condition for a match to carry satisfaction (forward and
backward). So strengthening Γ was free. Now, Γ should be an invariant in the sense that it
should always carry over to the next transition in a run. So it can’t be strengthened arbitrarily –
or it becomes that much harder to prove in the next step. A multiplicative version of clauseρ

would require proving too strong a conclusion (based on Γ1, Γ2) from too weak a premise (based
on φ1 ∨φ2). In the case of conjρ, Γ1, Γ2 happens to be exactly be the weakest context that can
prove φ1 ∧φ2.
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An empty context in ∀guardρ and ∃guardρ is required for similar reasons. For instance,
in the case of ∀guardρ, keeping the same context Γ makes it too strong because the formula
∀x. α(x,y) → φ might be true while φ is not (for some interpretation). It may be possible to
find richer contexts that carry enough information to expand the conditions where ∀guardρ

and ∃guardρ apply, but we would lose an important feature of the current rules: since disjρ is
additive, we can prove formulas of the form ↓(F1 ∧G)∨ ↓(F2 ∧G) as long as F1, F2 are proved
without clauseρ. If ∀guardρ and ∃guardρ added context information depending on α(x,y),
they would not be allowed in the proofs of F1 and F2. This feature has practical applications in
chapter 5.

Of course, Γ ρ̀ φ implies Γ ∗̀ φ.

Example. The formula ∀x. On(x) is ∗̀-provable but not ρ̀-provable. �

Example. The formula F1 shown at the beginning of this section is ∗̀-provable (which means
it is context-free and retractable for some radii, but not ρ̀-provable. As shown on figure 3.8,
it should not be provable: the goal of ρ̀ is to build formulas that remain satisfied throughout
executions; figure 3.8 shows two sucessive pattern matches where each pattern satisfies F1 but
the target of the 2nd match does not satisfy F1. �

Overview of main theorem

To state the theorem, we need the following notions:

Definition (Initial states). If I a pre, quantifier-free formula, a structure S : Θ◦ is in Init(I) if S
is the empty structure or S � ∀I. �

The theorem to prove is:

Theorem 3.5.1. If Γ ρ̀ φ and M ∈ Init(
∧
Γ ∧ Has), then

ρM(φS0) = execM(rules(P(φS0, ‖φS0‖)))

The proof is in section 3.5.

3.4.2. Run inclusion

Lemma 3.4.2 neatly packs up some sufficient conditions for a set of runs to be included in
another. We start with an obvious fact:

Lemma 3.4.1. If A,B are sets of transitions such that A ⊆ B then ρ(A) ⊆ ρ(B)

Proof. Let r ∈ ρ(A). For all Ai,Ai+1 ∈ r, Post(Ai) = Pre(Ai+1) by assumption on r and Ai,Ai+1 ∈
B by assumption on A and B. So r ∈ ρ(B) by definition of ρ(B).

The idea behind this lemma is to explicitly state that some invariant is needed; here the set S
is a set of states, and run inclusion happens with the invariant shifting from one state to the
next.

Lemma 3.4.2. If S : Θ◦, M,N are two sets of transitions, S a set of states, S ∈ S and for all
supported A ∈M, Pre(A) ∈ S implies A ∈ N and Post(A) ∈ S, then ρS(M) ⊆ ρS(N).

Proof. Let r A1, . . . ∈ ρS(M). By induction on i, we show Pre(Ai) ∈ S and Post(Ai) ∈ S for all
Ai ∈ r.
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If i = 1 we have Pre(A1) = S by definition of ρS(M) so by assumption on S and S, Pre(A1) ∈ S.
So Post(A1) ∈ S.

Otherwise there is Ai−1 ∈ M such that Post(Ai−1) = Pre(Ai), and by induction hypothesis
Post(Ai−1) ∈ S, so Pre(Ai) ∈ S, and Post(Ai) ∈ S.

By definition of ρS(N), it suffices to show Ai ∈ N for all i > 0, Ai ∈ r. Take any such Ai. By
assumption Ai ∈M and by the above Pre(Ai) ∈ S. So Ai ∈ N.

3.4.3. d-validity

Definition (d-validity). For d > 0, a formula ψ is d-valid whenever A,µ � ψ for all A,µ : 〈ψ〉 →
dom(A) such that for some a,b ∈ Im(µ), δA(a,b) > d. �

This technical requirement of d-validity is related to the proviso that GC is connected in a
great clause C. The lemmas below show its usefulness: given a match m : p→ B, a requirement
of both context-freeness and retractability is that for some I, we must have B � ∀(I∨m). During
a run, we will see that Pre(B) � ∀I is given by the previous run step (or by the initial state of
the run). However, some elements may appear, i.e. not be in Pre(B). For those, we do know
that they have an m-preimage in p, so they are mostly taken care of by the “m” disjunct of
B � ∀(I∨m).

However there is a technical corner case, which we now discuss informally: suppose I has 2

free variables, a,b ∈ B, a /∈ Pre(B), and b does not have an m-preimage. So the “m” disjunct
cannot help us. We need B � I(a,b), but that is not given to us by Pre(B) � ∀I since a /∈ Pre(B).
We will see in the lemma below that by their characterisation, a and b must be far apart in B,
in fact, far enough apart that d-validity ensures B � I(a,b)!

Lemma 3.4.3. If A,B : Θ, I is d-valid, m : (A,BA(J∆KA,d)) → B, Pre(B) ∈ Init(I), and B is
supported, then B � ∀(I∨m)

Proof. Take any ν : 〈I〉 → dom(B). If Im(ν) ⊆ dom(Pre(B)), we are done since Pre(B) ∈ Init(I).
Otherwise, there is a ∈ Im(ν) \ dom(Pre(B)), so δB(a, J¬HasKB) = 0.
Since B is supported, J¬HasKB ⊆ J∆KB, so δB(a, J∆KB) = 0. We get the following inclusions

by the lemmas indicated below:

BB(J∆KB,d) ⊆
lemma 3.3.13

BB(m(J∆KA),d) ⊆
lemma 2.4.5

m(A)

I is d-valid so wlog δB(a,b) 6 d for every a,b ∈ Im(ν). We have Im(ν) ⊆ BB(J∆KB,d) ⊆ m(A),
so we are done.

The next lemma is key to taking care of the corner case mentioned above. It explains why
great clauses must have a connected graph.

Lemma 3.4.4. If Γ ρ̀ φ then
∧
Γ is ‖φ‖-valid.

Proof. First, note that if a formula is d-valid, it is d ′-valid for all d ′ > d. We proceed by induction
on the derivation.

• literalρ: Trivial.

• clauseρ: C is great so GC is connected; trivially, so is GC◦ . By lemma 3.3.12, if A,µ 2 C◦

then δA(a,b) 6 d for all a,b ∈ Im(µ); this is the contrapositive phrasing of |Im(µ)|-validity.
Since |Im(µ)| 6 |〈C◦〉| = ‖∀C‖, we are done.
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• disjρ, ∀guardρ, ∃guardρ, circumρ: Direct application of induction hypothesis:
∧
Γ is

‖φ‖-valid and the formula in the conclusion has quantifier rank at least that of φ.

• conjρ: We have a ‖φi‖-valid
∧
Γi for i ∈ {1, 2}. It is easy to see that

∧
Γ1, Γ2 is max(‖φ1‖, ‖φ2‖)-

valid; this happens to be the quantifier rank of φ1 ∧φ2.

3.4.4. Run equality modulo context-free, retractable, d-validity

In this subsection we state the main lemmas which lead to the theorem. The next lemma simply
says that support plays nice with validity in image complement.

Lemma 3.4.5. If m : (A,K)→ B and B is supported then B � ∀(Has ∨m).

Proof. Let a /∈ m(A) so by lemma 3.3.13 a /∈ J∆KB. Since B is supported, a ∈ JHasKB.

The two lemmas after that are dual of each other and correspond to the reasoning outlined in
the introduction of this chapter.

Lemma 3.4.6. If φ is (I ∧ Has,d)-context-free, I is d-valid, φ � ∀I?, and S ∈ Init(I), then
ρS(Inst(P(φ,d))) ⊆ ρS(φ)

Proof. By lemma 3.4.2 we need B ∈ J∃φK and Post(B) ∈ Init(I) for every supported B ∈
Insts(P(φ,d)) such that Pre(B) ∈ Init(I). Since φ � ∀I?, it will suffice to show B,ν � φ for some
ν : 〈φ〉 → dom(B); this will imply both B ∈ J∃φK and Post(B) ∈ Init(I).

By definition of P(φ,d), there is (A,B∆,µ
A (d)) ∈ P(φ,d) and m : (A,B∆,µ

A (d)) → B with
µ : 〈φ〉 → dom(A) and A,µ � φ. We will show B,m ◦ µ � φ. Since φ is context-free modulo
I∧ Has, it suffices to show B � ∀((I∧ Has)∨m). We get B � ∀(Has ∨m) by lemma 3.4.5. Since
BA(J∆KA,d) ⊆ B

∆,µ
A (d), by lemma 2.4.4 m : (A,BAJ∆KA(d))→ B, so we can use lemma 3.4.3 to

get B � ∀(I∨m).

Lemma 3.4.7. If φ is (I∧ Has,d)-retractable, I is d-valid, φ � ∀I?, and S ∈ Init(I) then ρS(φ) ⊆
ρS(Inst(P(φ,d))).

Proof. By lemma 3.4.2 we need B ∈ Inst(P(φ,d)) and Post(B) ∈ Init(I) for every supported
B ∈ J∃φK such that Pre(B) ∈ Init(I). Since φ � ∀I?, Post(B) ∈ Init(I); so it suffices to show
B ∈ Inst(P(φ,d)).

By assumption there is µ : 〈φ〉 → dom(B) such that B,µ � φ. Let A B � B∆,µ
B (d+ 1). We

trivially have idA : (A,B∆,µ
A (d))→ B.

By lemma 2.4.4, idA : (A,BA(J∆KA,d)) → B so by lemma 3.4.3, B � ∀(I∨ idA). By lemma
3.4.5, B � ∀(Has ∨m). So B � ∀((I∧ Has)∨m). Since φ is retractable with d a retraction radius,
A,µ � φ. So (A,B∆,µ

A (d)) ∈ P(φ,d), so B ∈ Inst(P(φ,d)).

The next lemma is key to maintaining the invariant I in (I,d)-context-freeness and retractability
throughout runs. It explains why disjρ is additive, why ρ̀ does not admit weakening, why the
context of ∀guardρ and ∃guardρ is empty, and why great clauses must have dual, pre-post
literals when they mention at least one literal with a symbol in Dyn.

Lemma 3.4.8. If Γ ρ̀ φ then φ � ∀(
∧
Γ)?
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Proof. By induction on the derivation.

• literalρ, disjρ, conjρ, circumρ, ∀guardρ,∃guardρ: Trivial.

• clauseρ C is great, so either LDyn(C) is empty, in which case C = C?, or it is not, in which
case C? ≡ >.

We can now say when ρS(ψ) = ρS(Insts(P(ψ, ‖ψ‖))): when it is the conjunction of a ρ̀-
provable formula and Support, and when S is nice enough:

Theorem 3.4.9. Let ψ φ∧ Support. If Γ ρ̀ φ and S ∈ Init(
∧
Γ) then

ρS(ψ) = ρS(Inst(P(ψ, ‖ψ‖)))

Proof. To apply lemmas 3.4.6 and 3.4.7 we need φ∧ Support to be (
∧
Γ ∧ Has, ‖φ∧ Support‖)-

context-free and retractable,
∧
Γ to be ‖φ∧ Support‖-valid, and φ∧ Support � ∀(

∧
Γ)?.

By lemma 3.3.22, φ is (
∧
Γ ∧ Has, ‖φ‖)-context-free and retractable. By lemma 3.3.16, φ∧

Support is as well. By lemma 3.4.4,
∧
Γ is ‖φ‖-valid, so it is ‖φ∧ Support‖-valid. By lemma 3.4.8,

φ � ∀(
∧
Γ)?, so φ∧ Support � ∀(

∧
Γ)?.

3.5. Main theorem

This section summarises the last two chapters by saying when the runs of a formula are equal
to the execution of the rules induced by the canonical patterns of that formula. It is simply a
matter of applying theorems 3.4.9 and 2.6.4.

Theorem 3.5.1. If Γ ρ̀ φ and M ∈ Init(
∧
Γ ∧ Has), then

ρM(φS0) = execM(rules(P(φS0, ‖φS0‖)))

Proof. Note that Support0 = Support ∧ Has0 ∧ Has?0. By lemma A.0.1 (given in appendix), there
is ψ ≡ Has0 ∧ Has?0 and Γ ′ such that Γ ′ ρ̀ ψ, so Γ , Γ ′ ρ̀ φ∧ψ. Since M ∈ Init(

∧
Γ), theorem 3.4.9

is applicable to φ∧ψ, so
ρM(φS0) = ρM(Inst(P(φS0, ‖φS0‖)))

By definition any pattern in P(φS0, ‖φS0‖) is pure and strongly supported. M ∈ Init(Has), so
theorem 2.6.4 is applicable, so

ρM(Inst(P(φS0, ‖φS0‖))) = execM(rules(P(φS0, ‖φS0‖)))

We complete figure 2.9 and show in figure 3.9 the connection between the runs on the
instances of P(φ, ‖φ‖) and the runs on the models of φ. The satisfaction relation on the right is
missing its interpretation component.
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Figure 3.9.: Left: a run in ρM0
(Insts(P)). Right: a run in ρM0

(φ)
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In the previous chapter we showed when runs on formulas can be interpreted as the execution
of a set of rules. But is that set of rules finite? In this chapter, we show when that set of rules
can be finite. This will be done by defining another set of deduction rules (the name clash is
unfortunate), C̀, such that C̀-provable formulas have a finite set of canonical patterns.

The proof uses a property called preservation. Essentially, models of a preserved formula φ
can lose changes in a very controlled way and still satisfy φ. Preservation is useful as a property
because it plays well with logical operations.

A first step is to restrict the class of transitions further. We introduce Bounded Forests with Links
in section 4.1. One crucial property of BFLs is that the graph of functions in Statfun is bounded
by some parameter n. In section 4.2 we define preservation. First, we introduce a parameterized
operation on BFLs called taking a sub. A formula φ is preserved (modulo some parameters) if
the sub of a model of φ is still a model of φ. In section 4.3 we show why preservation leads to a
finite set of canonical patterns, and finally in section 4.4 we introduce deduction rules to build
preserved formulas.

We start by going back to the issue of an infinite set of rules. If P(φ, ‖φ‖) is infinite, theorem
3.5.1 is not very useful. If there are infinitely many patterns to sift through, an execution engine
for _ cannot do much good. Where does the infinity come from? First, there is no bound on
the size of a ball (even of radius 0) around a element of a transition. We will restrict the class of
transitions so that for every element, its d-ball is bounded for all d > 0.

Moreover, the domains and application conditions of the canonical patterns are of the form
B
∆,µ
A (d), i.e. balls around two sets: 1) the image of an interpretation (µ), and 2) changes (∆).

The image of µ is bounded by the formula, but the number of changes is not. The min operator
↓ can help, but there is still work to do: a formula may very well be of the form ↓φ yet have
infinitely many canonical patterns.

Figure 4.1.: Precondition of Ak. Ak �↓CC, the entire connected component of c must become
Blue.

59



4. Bounded change-minimal specifications

Example. Suppose Link, Link? or of outdegree 2 at most. Consider:

↓CC ↓
(
Blue(c)∧

∀x. (x 6= c→ ¬Blue(x))∧
∀y. Blue?(x)→ Link?(x,y)→ Blue?(y)

)
with Blue ∈ Dyn. CC(c) specifies a) that the interpretation of c is Blue and no other element is
blue, and b) an element with a Blue? neighbor must be Blue?.

For every k > 0 consider the transition Ak, with a precondition as in figure 4.1. There is a
connected component (for the relation Link) of size k. Since Blue? is true for JcKAk , Blue? must
be true of JcKAk ’s neighbour, and so on for the entire connected component. For every k > 0,
the transition of figure 4.1 is a model of ↓CC. So the number of canonical patterns for ↓CC is
infinite even up to isomorphism. �

4.1. Bounded Forests with Links

In this section we define bounded forests with links and show the theories that characterise
them. The proofs are in the appendix.

We are moving to a more restricted class of transitions, so that a transition can always
be described as a pair of forests with trees of bounded height, linked by a functional and
symmetric relation. The bounded height of the trees is necessary to get a finite number of
canonical patterns.
Definition (BFL signature). Θ is a BFL signature if Statfun contains a distinguished function
symbol parent. �

Definition (n-BFL). If n > 0, Θ is a BFL signature and A : Θ, A is an n-BFL (notation: A : Θn)
whenever:

• The loop-free union of the graphs of functions JfKA for f ∈ Statfun \ {parent} is a forest.

• The trees of that forest have height at most n.

• The loop-free graph of JparentKA is the parent relation in that forest.

• The relations JLinkKA and JLink?KA are symmetric and functional.

�

The parent function makes the proofs simpler since any embedding is now a 0-embedding
(since accessibility through the function graph is now symmetric).

Note that if A : Θn, the restriction of GA to 0-edges, G0A, is the undirected version of the forest
in the definition of n-BFL.

Implicit parameter [BFL height] n > 0 is an arbitrary maximum height.
Definition (Tree). A tree of t of GA is the restriction of G0A to one of its connected components.
Vt ⊆ dom(A) is the vertex set of that tree. If a ∈ dom(A), ta is the tree of GA that contains a. �

It is easy to see that Vta = BA(a, 0) for all a ∈ dom(A) and that for any b ∈ Vta , b ∈ A � {a}.
Example. In figure 4.2, the transition A has two trees. We have Statfun = {f,g, parent}, and A is
a 1-BFL. The interpretations of Link and Link? are symmetric and functional (no change from
earlier graphical representations). The parent function is indeed the inverse of all other functions
everywhere except on tree leafs. The tree containing a is ta, and Vta = BA({a}, 0) = {a,b, c}. �
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Figure 4.2.: A 1-BFL A

It is possible to characterise n-BFLs with universal, first-order formulas:

Definition. The theory of n-BFLs is:

Tn Symlink ∧ Funlink ∧T ′n

where

T ′n ∀x.PSpec(x)∧Hn(x)

PSpec(x)
( ∧
f∈Statfun

f(x) 6= x→ parent(f(x)) = x
)

∧
(

parent(x) 6= x→
∨

f∈Statfun

f(parent(x)) = x
)

Hi(x)
∧

f∈Statfun

f(x) 6= x→ Hi−1(f(x)) (for 0 6 i < n)

H−1(x) ⊥
FunLink’ ∀x,y, z. Link(x,y)→ Link(x, z)→ y = z

FunLink FunLink ∧ FunLink?

Symlink ′ ∀x,y. Link(x,y)→ Link(y, x)
Symlink Symlink ∧ Symlink?

�

Lemma 4.1.1. If A : Θ, A : Θn iff A � Tn.

See proof in Appendix A.

Definition. TnS Tn ∧ Support �
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4.2. Preservation

In this section we define preservation and give some examples to help build intuition. The
definition is a bit involved and goes through intermediary steps. First, some elements in an
n-BFL are considered active if they are involved in a particular kind of change. Next, a tree
t in an n-BFL A can be cleared, producing a subtransition A ′. This clearing operation removes
changes involving t in a very controlled way. For instance, it does not remove changes that
touch trees with active elements. Subtransitions are parameterised by a set of elements and a
distance. We then define preservation on formulas by saying that for a formula φ, if satisfaction
is closed under the operation of clearing a tree (thus producing a sub) modulo those parameters,
then φ is preserved modulo those parameters.

We conclude with more examples to help understand subs and preservation.
Notation (Useful formula macros). If A ∈ Dyn and x is a tuple of variables of size the arity of A,
then:

⊕A(x) ¬A(x)∧ A?(x) (“A(x) becomes true”)
	A(x) A(x)∧¬A?(x) (“A(x) becomes false”)

�

Definition (Operations on relations and sets). If R is a relation and X is a set,

R / X { r ∈ R | r∩X 6= ∅ } (tuples that mention X)
R \X R \ (R / X) (tuples that do not mention X)

�

For instance, {(a,b), (a, c)} / {b} = {(a,b)} and {(a,b), (a, c)} \ {b} = {(a, c)}. The operation \

generalizes the usual difference in that the definition reduces to set or relation difference one
when R is a unary relation and either R is understood as a set, or when X is understood as a set
of 1-tuples.

We move on to preservation. First, some preliminary definitions:
Definition (Active elements and trees). If A : Θn, a ∈ A is active whenever at least one of the
following is true:

• a ∈ J∆AKA, for some A ∈ Dyn unary

• There is b ∈ Vta such that (a,b) ∈ J	LinkKA

• There is b ∈ dom(A) such that (a,b) ∈ J⊕LinkKA

A tree t of GA is active if it contains at least one active element. The set of elements in active
trees is A(A), and for t a tree of GA, the set of elements in active trees different from t is
At(A) A(A) \ Vt. �

In plain english, a elements is active if it is involved in any change other than an edge deletion
involving a different tree.
Example. In figure 4.3, the transition A contains 2 trees, one with the elements a,b, c and one
with the single element d. The active elements are in red. a is active because it is in J∆AKA, and
c is active because it loses an internal edge. However, b and d both lose an edge connected to
another tree (the orientation of the edge is irrelevant), so they are not active. As a result, ta is
active because it has at least one active element, but td is not active. �
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Figure 4.3.: active elements in red. Figure 4.4.: B, after clearing ta in A.

Definition (Subs). If A : Θn, B E A, K ⊆ dom(B), d > 0 and t is a tree of GA, B is a (K,d)-sub of
A with cleared tree t whenever there is K ′ ⊆ dom(B) such that:

Vt ∩K ′ = ∅
At ∪BA(K,d) ⊆ K ′

J∆AKB = J∆AKA \ Vt (for all unary A ∈ Dyn)
J⊕LinkKB = J⊕LinkKA \ Vt

J	LinkKB = (J	LinkKA \ Vt)∪ (J	LinkKA /BB(K ′, 0))

If t is not specified, we say that B is a (K,d)-sub of A, and if K,d are not specified, we say
that B is a sub of A. �

In plain english, in a (K,d)-sub with cleared tree t, we

1. Pick a 0-ball around a protected set. It must contain at least a certain ball and active
elements outside of t

2. Make sure t does not touch the protected set

3. Make t inactive

4. Also remove edge deletions that involve t and any edge deletion with one leg in t and the
other unprotected.

5. Possibly remove any unprotected element of dom(A) in a way compatible with E.

The idea is that gradually removing changes this way lets us keep satisfying a class of formulas
on the way down to minimal changes.

If a change (unary predicate change, or edge deletion, or edge addition) is present in A but
not present in B, we say that the change has been cleared.

Example. Clearing ta in A from figure 4.3 (and picking a minimal K ′) result in B, a (∅, 0)-sub of
A, seen figure 4.4. All changes from ta are removed, including the edge deletion between b and d.
The edge deletion is cleared because td is not active.

Contrast with transitions A ′ (figure 4.5) and B ′ (figure 4.6). The difference between A and A ′

is that d is active in A ′ (because d ∈ J∆AKA ′). Just as B is a (∅, 0)-sub of A with cleared tree ta,
B ′ is a (∅, 0)-sub of A ′ with cleared tree ta. Note the difference: since td is active in A ′, the link
deletion between b and d has not been cleared. However, clearing td in B ′ would finally clear
that link deletion. �
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Figure 4.5.: A with an active d. Figure 4.6.: B ′, after clearing ta in A ′.

Definition (Preservation). If d > 0 and V is a set of variables a formula φ is (V,d)-preserved
whenever for all A : Θn, µ : V → dom(A), (µ(V),d)-sub B of A and ν : 〈φ〉 \ V → dom(B), if
A,µ,ν |= φ then B,µ,ν |= φ.

�

Informally, φ is (V,d)-preserved if φ-satisfaction is closed under (V,d)-sub.
Examples.

• Consider the formula A?(x). If a ∈ JA?KA \ JAKA, that remains true for any sub of a as long
as a is not cleared. So A?(x) is ({x}, 0)-preserved. In general, postcondition constraints
increase the level of protection necessary for a formula to remain preserved.

• Consider ∀x. A(x). Since only the precondition is mentioned, taking a sub cannot break
satisfaction of the formula. In general, precondition constraints cannot impact preserva-
tion.

• Consider Link?(x,y). If a link “appears” between the interpretation of x and y and either
of them is cleared, the link creation will be cleared as well. So they must both be protected:
the formula is ({x,y}, 0)-preserved, as well as ({x}, 1)-preserved and ({y}, 1)-preserved. In
general, positive link constraints should be protected on both sides.

• Consider ∃x. N(x), with N ∈ Stat a predicate symbol. With the model A with {a,b} =
dom(A) and {a} = JNKA, removing a yields a (∅, 0)-sub B which is not a model of ∃x. N(x).
In general, without precautions, existential quantification can easily make formulas be
not-preserved, even if the formula below the ∃ does not talk about dynamic properties at
all.

�

4.3. Preservation leads to finitely many canonical patterns

In this section, we show that preserved formula of a certain shape have finitely many canonical
patterns.

Overall, preservation leads to finitely many canonical patterns (for minimised formulas)
because as one takes subs, one goes down the change order E. Eventually all changes are
inside a protected area defined as a ball around the interpretation of variables. Therefore
there is a bounded number of changes in the minimal models of a preserved formula. Since
function graphs in n-BFLs are bounded, balls around elements have bounded size; and therefore
corresponding canonical patterns have bounded size.

The next two lemmas are weakening lemmas:
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Lemma 4.3.1. If B is a (K,d)-sub of A and BA(K
′,d ′) ⊆ BA(K,d) then B is a (K ′,d ′)-sub of A.

Proof. Trivial.

Lemma 4.3.2. If φ is (V,d)-preserved, V ⊆ V ′ and d 6 d ′, φ is (V ′,d)-preserved.

Proof. Let X be the variables of V, Y be the variables of V ′ \ V.
Let A : Θn. Let µY : X] Y → dom(A) be any interpretation, and µ : X→ dom(A) µY � X. Let

B be a (Im(µY),d)-sub of A, νY : 〈φ〉 \ (X] Y)→ dom(B) be any interpretation, and ν : 〈φ〉 \ Y →
dom(B) νY ] (µY � Y). We have µY ] νY = µ] ν.

By lemma 4.3.1 and assumption on φ, B,µ,ν |= φ. So B,µY ,νY |= φ.

Here we see that taking subs does not break out of the class of n-BFLs:

Lemma 4.3.3. If A : Θn and B is a sub of A, then B : Θn.

Proof. First, we show that Link and Link? are symmetric and functional.
By definition of E, JLinkKB = JLinkKA, so JLinkKB is symmetric and functional.
So we need J∆LinkKB symmetric and functional. It is defined by a restriction of J∆LinkKA,

which is symmetric and functional, to subrelations of JLinkKA and JLink?KA, which are symmetric
and functional. These subrelations are defined by restriction to sets or deletion of sets, so they
are symmetric and functional as well. Simple set-theoretic considerations yield the result.

Now we want the loop-free union of JhKB for h ∈ Statfun \ {parent} to be a tree and JparentKB
to be the parent function of that tree. By definition of E, dom(B) ⊆ dom(A) and JStatKB =

JStatKA � dom(B), so it suffices to show that for e ∈ VGA
, with te the tree of e in GA, e /∈ dom(B)

implies Vte ∩ dom(B) = ∅ (that is, that removing any element removes their entire tree).
If e has no parent or child in te, we are done. If there is v parent of e in GA, there is f ∈ f such

that JfKA(v) = e. So v ∈ dom(B) implies e ∈ dom(B). If there is v child of e, then JparentKA(v) = e,
and again v ∈ dom(B) implies e ∈ dom(B). The proof goes by induction on the distance to
e.

Definition. Let

SuppD ∀xy. (Link(x,y)∨ Link(y, x)∨
∨

A∈Dyn unary

A(x))→ Has(x)

SupportD Support ∧ SuppD ∧ Supp?D

�

Definition. TnSD Tn ∧ SupportD �

This strengthening of support requires that an element with at least some true dynamic
property is deemed to be present.

A transition is dynamically supported when it satisfies SupportD, and a formula is dynamically
supported when it implies SupportD. SupportD is this chapter’s version of Support0: a formula
stronger than Support necessary for some inductions to go through or preservation properties
to hold.

The following lemma shows that by repeatedly taking subs from a dynamically supported
transition, we reach a point where all changes are within a small boundary:

Lemma 4.3.4. If A : Θn is dynamically supported, d > 0, K ⊆ dom(A), there exists a dynamically
supported (K,d)-sub B of A with B 6= A whenever either
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4. Bounded change-minimal specifications

• There is a /∈ BA(K,d) such that a ∈ J∆AKA for some A ∈ Dyn, or such that (a,b) ∈ J⊕LinkKA
for some b.

• There is a /∈ BA(K,d+ 1) such that (a,b) ∈ J	LinkKA for some b.

Proof. We start by defining the cleared tree t. If ta (the tree of GA that contains a) is active,
let t ta. Otherwise, by definition of active, there is b ∈ dom(A) with tree tb 6= ta and
(a,b) ∈ J	LinkKA. Let t tb.

Let B be as follows, for A ∈ Dyn unary:

J⊕LinkKB J⊕LinkKA \ Vt

J	LinkKB (J	LinkKA \ Vt)∪
(
J	LinkKA /

(
At(A)∪BA(K,d)

))
J∆AKB J∆AKA \ Vt JDynKB JDynKA

which induces JA?KB for all A ∈ Dyn. Now let dom(B) JHasKB ∪ JHas?KB, and JStatKB
JStatKA � dom(B).

We show that B well-defined: it is trivial for the static part; if b ∈ dom(A) is in the underlying
set of JAKA = JAKB for some A ∈ Dyn, since A is dynamically supported, b ∈ JHasKB ⊆ dom(B).
Otherwise, suppose b is in the underlying set of J⊕AKA. Again by dynamic support, b ∈ J⊕HasKA.
If b ∈ Vt then b /∈ JHas?KB, so b /∈ dom(B), otherwise b ∈ JHas?KB, so b ∈ dom(B). The same
reasoning shows that B is dynamically supported.

We show that B E A. JDynKB = JDynKA and JStatKB = JStatKA � dom(B) by definition.
Since for A ∈ Dyn, J∆AKB is defined by restriction, we have J∆DynKB ⊆ J∆DynKA. Since
JHasKB = JHasKA and JHas?KB is defined by restriction of JHas?KA, dom(B) ⊆ dom(A).

By construction, B is a (K,d)-sub of A (with K ′ = At ∪BA(K,d), which is closed by taking the
0-ball around it).

We show B 6= A.
If ta is active in A then by definition of active, there is c ∈ Vt (remember that here, t = ta)

such that either, for some A ∈ Dyn unary, c ∈ J∆AKA, so J∆AKA 6= J∆AKA \ Vt = J∆AKB; or there
is d ∈ dom(A) such that (c,d) ∈ J⊕LinkKA, so by definition of J⊕LinkKB we get J∆Link?KB 6=
J∆Link?KA.

Otherwise, we have (a,b) ∈ J	LinkKA. Since ta is not active, a /∈ At(A); and by definition of t,
b /∈ At(A). By assumption a /∈ BA(K,d+ 1) so a /∈ BA(K,d), and b is at distance at most 1 from
a, so b /∈ BA(K,d). We get J	LinkKB 6= J	LinkKA.

Using the previous lemma, we obtain that dynamic support is preserved by drawing any
protected boundary and clearing a change outside of the boundary.

Lemma 4.3.5. If A : Θn is dynamically supported, d > 0, K ⊆ dom(A), and there is A ∈ Dyn,
a ∈ e ∈ J∆AKA, and a /∈ BA(K,d+ 1), there is a dynamically supported (K,d)-sub B of A such
that B 6= A.

Proof. Immediate application of lemma 4.3.4 since a /∈ BA(K,d+1) implies that a /∈ BA(K,d).

We are interested in the size of protected areas, specifically of a ball of radius d around an
element. The trees of an n-BFL have a bounded size (height bounded by n, degree bounded by
|Statfun|) and a bounded number of neighbors (by functionality of Link and Link?) so we get an
upper bound. Out of convenience, the formulation of the lemma names a witness bounding
function: in chapter 7 we will enumerate a number of variables bounded by the size of balls in
n-BFLs, and having an explicit bound will simplify notation.
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4.4. Building preserved formulas with C̀

Lemma 4.3.6. There is a function `Θn(d) ∈ O(|Statfun|
2dn2) such that for all A : Θn if a ∈ dom(A)

and d > 0 then |BA(a,d)| 6 `Θn(d).

Proof. Trees of GA have degree at most |Statfun|− 1 and height at most n, so they are of order
6 |Statfun|

n. Since each element in a tree is linked to at most two other elements (one in Link
and one in Link?), we can bound the number of trees at distance d from an element by the
order of a graph of diameter 2d and degree at most s 2|Statfun|

n. By [Miller and Sirán, 2005],
that number is bounded above by s(s−1)2d−2

s−2 + 1 if n > 0 and 4d+ 1 if n = 0. So |BA(a,d)| ∈
O(|Statfun|

2dn2) (number of trees × size of trees).

Direct application of the previous lemmas shows the importance of preservation:

Theorem 4.3.7. If ↓ φ1 ∨ . . .∨ ↓ φm is (V,d)-preserved and implies TnS, then for all d ′ > 0,
P(
∨
↓φi,d ′) is finite up to iso.

Proof. It suffices to show that the sup of |dom(A)| for (A,K) ∈ P(
∨
φi,d ′) is finite.

Let (A,K) ∈ P(
∨
φi,d ′). For some µ and 1 6 i 6 m, A,µ �↓φi. By definition of P,

dom(A) = B
∆,µ
A (d ′ + 1) = BA(Im(µ),d ′ + 1)∪BA(J∆KA,d ′ + 1)

Since A : Θn is supported, by lemma 4.3.5 J∆KA ⊆ BA(µ(V),d+ 1). Moreover µ(V) ⊆ Im(µ), so

BA(J∆KA,d ′ + 1) ⊆ BA(Im(µ),d ′ + d+ 2)

therefore
dom(A) ⊆ BA(Im(µ),d ′ + d+ 2)

So by lemma 4.3.6, |dom(A)| is bounded by a function of |〈
∨
φi〉|, Θ, d and d ′.

4.4. Building preserved formulas with C̀

In this section, we show how to construct preserved formula by introduced a set of “typing
rules” we call C̀. First, we present the ruls and give the intuition behind them. Then we prove
that C̀ is correct for preservation. Recall that preservation is a property parameterised by a set
of variables V and some d > 0. Similarly, C̀ has a context of the form V,d.

4.4.1. The rule system C̀

Note that in the following rules, the context are parameters of the preservation property. In the
sequel, we will show that if V,d C̀ φ then φ is (V,d)-preserved.
Definition. If x,y are two variables and V is a set of variables, V+y

-x (V∪ {y}) \ {x}. �

In the rules, α(x,y) is any guard. The preservation property is designed to compose well.
The following deduction rules all produce preserved formulas:

L ∈ LDyn? DynamicC〈L〉 ; 0 C̀ L
L ∈ L=

Dyn,Stat StaticC∅ ; 0 C̀ L

V ;d C̀ φV ⊆ V′

d 6 d′ WeakC
V ′ ;d ′ C̀ φ

V ;d C̀ φ1 V ;d C̀ φ2⊕ ∈ {∧,∨} BoolC
V ;d C̀ φ⊕φ1
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4. Bounded change-minimal specifications

V ;d C̀ φ CircumC〈φ〉 ;d+ 1 C̀↓(φ∧ SupportD ∧ Symlink)
{x} ; 0 C̀ φ

?

InvariantC∅ ; 0 C̀ φ
◦ ∧φ?

V ;d C̀ φ
x /∈ V ∀C

V ;d C̀ ∀x. φ
V ;d C̀ φ GuardC

V
+y
-x ;d+ |{x}∩V| C̀ α(x,y)→ φ

V ;d C̀ φ ∃-GuardC
V

+y
-x;d+ 1 C̀ ∃x. α(x,y)∧φ

Discussion

The rules StaticC and DynamicC introduce literals. Equality literals, literals on the precondition
and static literals do not need any protected area to remain satisfied under sub since a sub only
removes changes by altering the postcondition. On the other hand, any variable mentioned in a
literal from LDyn? should a priori be protected (the rule can actually be slightly relaxed).

The rule WeakC directly implements the weakening of lemma 4.3.2: if φ-satisfaction is closed
under taking subs for some protected area, it’s always safe to grow that area.

The two rules packed in BoolC show that positive boolean operations are well-behaved with
regards to preservation.

At a high level, the rule CircumC is intuitive: if a set is closed for subs, its E-minimal set of E
is as well (remember that the sub relation is finer than E). The formulas SupportD and Symlink
are added in because they are not provable (unlike the rest of TnS). Also, while not necessary
for the lemmas and theorems of this chapter, we grow the context in CircumC (adding 1 to
d, adding all free variables to V) so that we can prove syntactic properties about C̀-provable
formulas in chapter 7.

More discussion about SupportD and Symlink is warranted. SupportD is not provable, and is
indeed not preserved. This is simply because any “appearing” element (so an element in some
JHas?KA \ JHasKA) ceases to be supported once it is selected for clearing (when taking a sub).
However, put under ↓, SupportD is such that there are no proper subs at all, so the property of
preservation becomes vacuously true. As for Symlink, that formula actually is (∅, 0)-preserved,
but the deduction rules cannot prove it. In the last chapter we mention some ideas on how to
make Symlink provable.

The rule InvariantC says that a postcondition property that only requires protecting changes
local to a single tree requires no protection at all once that property is extended to the precondi-
tion.
Example. Take the formula A?(x)∨ B?(x). If A is an n-BFL and a ∈ dom(A) such that A, x 7→
a � A?(x)∨ B?(x) then any sub of A which protects a still satisfies the formula. Now with the
formula

F = (A(x)∨ B(x))∧ (A?(x)∨ B?(x))

no protection is required: if the changes local to a are cleared, they are cleared all at once. Since
A(a)∨ B(a) is satisfied in the precondition, a complete absence of changes means A?(a)∨ B?(a)

will be satisfied in the postcondition.
We illustrate the effect in figure 4.7. On the top left, a transition satisfies ∀A?(x)∨ B?(x). But

after clearing a (bottom left), the new transition does not satisfy ∀A?(x)∨ B?(x). Compare with
the right side: on the top right, a transition satisfies ∀F, and the transition that results from
clearing a still satisfies ∀F. �
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4.4. Building preserved formulas with C̀

Figure 4.7.: Illustrating the effect of InvariantC

In tandem with InvariantC, the rule ∀C can build universal sentences: once a variable x has
been removed from the context V using InvariantC, x can be universally quantify using ∀C
(note the proviso x /∈ V).

The rule GuardC combines two ideas. The first idea is that if we know that the interpretation
of two variables x and y are linked, instead of having both x and y in the context, we can keep
only y in the context and extend the protected area by increasing d. Again, this means we can
universally quantify on x. The second idea is that if x /∈ V, we actually only need to protect y
and do not need include the interpretation of x in the protection radius. This is thanks to the
asymmetry in the definition of subs:

Example. Take the formula ¬Link?(x,y). It is equivalent to a formula of the form α(x,y)→ φ

(where φ is x 6= x, for instance). Going just by DynamicC, the context should be {x,y}, 0. But by
GuardC, the context can be just {y}, 0; that is, ¬Link?(x,y) is ({y}, 0)-preserved. This is due to the
asymmetry in the definition of subs: link deletions are not cleared when they touch an element
of the protected set. However, note that the positive literal Link?(x,y) is not ({y}, 0)-preserved,
following the definition of sub which removes any link addition which touches a cleared tree.
One may wonder if the same trick used for link deletions could also be used for link additions.
We were not able to construct such a symmetric notion of sub; in particular the definition
of active becomes difficult. In addition we think there is a more fundamental problem, not
apparent in the current version of C̀. As mentioned earlier, Symlink is not provable even though
it is preserved. With more powerful rules capable of proving formulas like Symlink, we foresee
that a symmetric version of sub would quickly lead to unbounded changes. �

Finally, the rule ∃-GuardC acts both as a guard and as a way to add existential quantifiers.
The guard part works as in GuardC, except the distance is always increased by 1 because taking
a sub can remove an element.

Design note. We think it is possible to build deduction rules with a context of the form V,q,
with q > 0, based on a different definition of preservation – instead of taking a ball of radius
d around the interpretation of V, one simply asks that it suffices to protect q trees at most in
addition those given by V (which q trees may depend on the interpretation of V). Under this
definition, it should be possible to have a rule with unguarded existential quantification. �

4.4.2. C̀-provable formulas are preserved

The following lemmas prepare for theorem 4.4.5.
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4. Bounded change-minimal specifications

The first one shows that binary dynamic atoms can be treated as unary when the link loops
back:

Lemma 4.4.1. If V is a set of variables, d > 0, and t is a term such that 〈t〉 /∈ V then the formula
Link?(t, t) is not (V,d)-preserved.

Proof. Take a model M such that dom(M) {e}, an interpretation µ such that JtKM,µ = e, no
JLinkKM ∅ and JLink?KM {(e, e)}.

We have M,µ |= Link?(t, t), but a (V,d)-sub of M with cleared tree te (possible since there is
no other variable than 〈t〉 in Link?(t, t)) does not satisfy Link?(t, t).

This lemma shows that for negative literals on links, it is actually enough to protect only one
of the ends of the link. Note that C̀ cannot prove that directly; but the rule GuardC exploits
that fact.

Lemma 4.4.2. If t,u are terms then ¬Link?(t,u) and ¬Link?(u, t) are ({u} ; 0)-preserved.

Proof. Take A and appropriate µ and B a ({u}, 0)-sub of A named B. By definition of a sub, no
edge deletion touching the tree of u may be cleared since JuKA,µ ∈ BA(J〈u〉KA,µ, 0).

The next lemma shows that pre formula do not look at Dyn? at all.

Lemma 4.4.3. If φ is a pre formula, A,µ,ν |= φ, B : Θ, Im(µ) ∪ Im(ν) ⊆ dom(B), JDynKB =

JDynKA and JStatKB = JStatKA � dom(B) then B,µ,ν |= φ.

Proof. Trivial by induction on the structure of φ.

This lemma shows that φ? is the syntactic counterpart of the mirror operation on pre formulas.

Lemma 4.4.4. If φ is a pre formula and A,µ,ν, |= φ then A−1,µ,ν |= φ?

Proof. Trivial by induction on the structure of φ.

We now show the correctness of C̀. The proof is by case analysis; no induction on the
derivation is required. The interesting cases are GuardC and InvariantC.

For GuardC, the trick is lemma 4.4.2, which shows that a negative guard α(x,y) only needs
to protect one of its variables. Note that this is thanks to the asymmetry between link creation
and link deletion in the definition of a sub. As a result, a formula of the form α(x,y)→ φ may
not need to protect both x and y if φ does not require it.

The case of InvariantC is illustrated to help the reader. The asymmetry in the definition
of a sub is again on display: we see no element needs to be protected from clearance but first
clearing the only tree that could need protection (the tree of the interpretation of x) and then
taking the mirror of the structure. Any remaining change involving the tree of interpretation of
x is a link addition, and due to the way a sub is defined, any remaining link creation can be
cleared without explicitly clearing that tree, but just by clearing its neighbors.

Theorem 4.4.5. If V ;d C̀ φ, then φ is (V,d)-preserved.

Proof. By case analysis.

WEAKC Immediate by lemma 4.3.2.
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BOOLC Let A : Θn, µ : 〈V〉 → dom(A). Let B be a (µ(V),d)-sub of A. Let ν : 〈φ〉 \ 〈V〉 → dom(B)

be such that A,µ,ν |= φ1 ⊕φ2.

If ⊕ = ∧, by assumption on φ1 and φ2, we have B,µ,ν |= φ1 ∧φ2.

If ⊕ = ∨, for i = 1, 2, if A,µ,ν |= φi then by assumption on φi, B,µ,ν |= φi. Either way
B,µ,ν |= φ1 ∨φ2.

GUARDC Let d ′ d+ | {y}∩V |. Let µ : V+y
-x → dom(A), and B be a (JV+y

-xKA,µ,d ′)-sub of A, and
ν : 〈α(x,y)→ φ〉 \ V+y

-x → dom(B) be such that A,µ,ν |= α(x,y)→ φ.

Suppose B,µ,ν |= α(x,y). We show A,µ,ν |= α(x,y) by showing that ¬α(x,y) is (V+y
-x,d ′)-

preserved: if α is equality or Link, this is trivial by definition of a sub. Otherwise, α(x,y) is of
the form Link?(t,u) with {x} = 〈t〉 or {x} = 〈u〉; so by lemma 4.4.2, ¬α(x,y) is preserved under
{y} ; 0, so by lemma 4.3.2, it is also preserved under V

+y
-x ;d ′. Now we know A,µ,ν � α(x,y), so

A,µ,ν � φ. To get B,µ,ν � φ, we only have to show that B is a ((µ ] ν)(V),d)-sub of A. We
consider whether y ∈ V:

If y ∈ V then d ′ = d+ 1. By lemma 4.3.1, we only need BA((µ]ν)(V),d) ⊆ BA(JV
+y
-xKA,µ,d+ 1).

Since V \V
+y
-x ⊆ {x}, it suffices to show BA(ν(x),d) ⊆ BA(JV

+y
-xKA,µ,ν,d+ 1). Since A,µ,ν |= α(x,y),

δA(ν(x),µ(y)) 6 1, which gives us BA(ν(x),d) ⊆ BA(µ(y),d+ 1). Since µ(y) ∈ JV+y
-xKA,µ, we are

done.

If y /∈ V then V ⊆ V
+y
-x and d ′ = d, so we can immediately apply lemma 4.3.2, to get B,µ,ν |= φ.

∀C Let A : Θn and µ : 〈V〉 → dom(A). Let B be a (µ(V),d)-sub of A, and ν : 〈φ〉 \ 〈V〉 → dom(B)

be such that A,µ,ν |= ∀y. φ,

For all a ∈ dom(A), A,µ,ν,y 7→ a |= φ. Since dom(B) ⊆ dom(A), for all b ∈ dom(B), by
assumption on φ we have B,µ,ν,y 7→ b |= φ. So B,µ,ν |= ∀y. φ.

∃-GUARDC Let µ : V+y
-x → dom(A), and B be a (JV+y

-xKA,µ,d+ 1)-sub of A, and ν : 〈α(x,y)∧φ〉 \
V

+y
-x \ {x}→ dom(B), a ∈ dom(A) be such that A,µ,ν, x 7→ a |= α(x,y)∧φ. We show a ∈ dom(B)

and B,µ,ν, x 7→ a |= α(x,y)∧ φ. Note how we cannot assume a ∈ dom(B) because of the
existential quantifier we are about to add, and that since x 6= y we have y ∈ V

+y
-x.

Let b µ(y). First, note that since δA(a,b) 6 1 and y ∈ V
+y
-x, we have BA(a,d) ⊆ BA(b,d+ 1) ⊆

BA(JV
+y
-xKA,µ,d+ 1). So, by definition of subs, a ∈ dom(B), and any link between ta and tb is

preserved in B, so B,µ,ν, x 7→ a |= α(x,y).

For φ, as in the case of GuardC, we need BA((µ] x 7→ a)(V),d) ⊆ BA(JV
+y
-xKA,µ,d+ 1) to apply

lemma 4.3.1. Since y ∈ V
+y
-x, it would suffice to show BA(a,d) ⊆ BA(b,d+ 1), which we just

established. So B,µ,ν, x 7→ a |= φ.

It immediately follows that B,µ,ν |= ∃x. α(x,y)∧φ whenever A,µ,ν does.

INVARIANTC We know {x}, 0 C̀ φ
?. Let ν : 〈φ〉 \ {x}→ dom(A), A, x 7→ a,ν |= φ◦ ∧φ? and B be a

sub of A with cleared tree t.
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4. Bounded change-minimal specifications

Since φ is a pre formula, by lemma 4.4.3, B, x 7→ a,ν |= φ◦.

Case 1 : If a ∈ Vt or if ta is not active in A, we have
that no element of Vta occurs in any J∆AKB, except
possibly in edge deletions involving ta and another
tree adjacent to ta. In the first case it is because
Vta = Vt has just been made inactive by going from
A to B, in the second case it is by definition of active.
We want B, x 7→ a,ν � φ?. The proof will work
by flipping Dyn and Dyn? in B. Any remaining
edge deletion that touches ta will become an edge
addition and so will become clearable by taking subs.
Then, once all changes have been removed, we can
deduce satisfaction of φ? from the satisfaction of φ◦.
Consider B−1. Since B, x 7→ a,ν |= φ◦, by lemma
4.4.4. B−1, x 7→ a,ν |= φ?.
Now, for any C E B−1 such that C, x 7→ a,ν � φ?, we
show that if J∆KC 6= ∅ then there is D C C such that
D, x 7→ a,ν � φ? and D has strictly fewer changes
than C.

• If there is an active tree t different from ta, clear it (that is, let D be a sub of C with cleared
tree t and minimal K ′). By assumption on φ, D, x 7→ a,ν � φ?, and clearing an active tree
always results in strictly fewer changes by definition.

• Otherwise, note that since ta is not active in B, the only changes in C that can involve an
element e ∈ Vta are an edge addition between e and an element e ′ /∈ Vta . So if there is no
tree t 6= ta active in C, then ta is not active in C.

Therefore no tree is active in C. So the only possible changes in C are removal of some
(b, c) edge, with ta, tb, tc pairwise distinct. Let D be a sub of C with cleared tree tb
and minimal K ′. Since tc is not active and is different from ta, D contains strictly fewer
changes than C. Again by assumption on φ, D, x 7→ a,ν � φ?.

Using the above statement, by induction on the product ordering on each J∆AKB−1 , there is
C E B−1 such that J∆KC = ∅ and C, x 7→ a,ν � φ?.

Since JA?KC = JAKC for every A ∈ Dyn, C, x 7→ a,ν � φ◦.
Since C E B−1, JAKC = JAKB−1 for every A ∈ Dyn. So B−1, x 7→ a,ν � φ◦.
Since JAKB−1 = JA?KB for every A ∈ Dyn, B, x 7→ a,ν � φ?.
The side figure illustrates case 1.
Case 2 : Otherwise, a /∈ Vt and ta is active. If t does not share an edge with ta, B is a

({a}, 0)-sub of A. If it does, since ta is active and different from t, it is in At(A), so, any edge
deletion between t and ta is preserved, so B is still a ({a}, 0)-sub of A. Since A, x 7→ a,ν |= φ?,
we have B, x 7→ a,ν |= φ?.

STATICC Trivial since equality, preconditions and static predicates do not change by taking a
sub.
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DYNAMICC Unary case: let A ∈ Dyn and take a well-defined JtKA,µ for some t,A,µ. By
definition of preservation, its may not be cleared. So in any (J〈t〉KA,µ, 0)-sub B of A, JtKA,µ ∈
JA?KA iff JtKB,µ ∈ JA?KB.

Binary case works the same way: take well defined JtKA,µ and JuKA,µ. No edge with both
ends in BA(J〈t〉 ∪ 〈u〉K,0) may be cleared, so J(t,u)KA,µ ∈ JLink?KA iff J(t,u)KB,µ ∈ JLink?KB.

CIRCUMC We show that ↓(φ∧ SupportD ∧ Symlink) is (V,d)-preserved, the rest is by WeakC.
Take some A : Θn such that A,µ � φ, let K µ(V), and take a BA(K,d)-sub B of A. By

assumption B,µ |= φ. By lemma 4.3.3, B : Θn, so B � Symlink. Now suppose B is not
dynamically supported. In that case, the cleared tree t contains an element a ∈ J⊕HasKA, and
that element is outside of BA(K,d), by definition of B. So by lemma 4.3.4, there is B ′, a (K,d)-sub
of A which is dynamically supported and such that B ′ 6= A. Again by 4.3.3 B ′ � Symlink, and
by assumption, B ′,µ |= φ. By definition of a sub, B ′ E A, so A was not minimal. Absurd.
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5. A safe program syntax

In this chapter we introduce a syntax for logic programs. Interpreted as formulas, these
programs are guaranteed to have their run semantics coincide with the execution of a finite set
of rules.

The shape of a program is a sequence of local “reactions” followed by global “invariants”. The
reactions should be seen as the successor to graph-rewriting rules: local pieces of knowledge
that say what mechanistic interactions can happen in the cell. The invariants are universal
formulas. They enforce coherence or encoding constraints that should be true at all times during
a run.

To show that all programs can be seen as a finite set of rules, we show that the formula
induced by a program is both ρ̀ and C̀-provable (up to logical equivalence). In the case of
invariants, this requires a small amount of syntactic gymnastics to reach a clausal form where
every clause is great.
Notation. In the sequel, if φ is a formula:

· ρ̀ φ stands for “there is a context Γ and a formula ψ ≡ φ such that Γ ρ̀ ψ”
· C̀ φ stands for “there is a context V,d and a formula ψ ≡ φ such that V,d C̀ ψ”

�

5.1. Programs P and formulas φP

In this section we introduce the syntax of programs. Here is an example program :
Definition. A program is of the following form:

θ1 ; . . . ; θk ensure I1, . . . , Ik ′ maintain Ik ′+1, . . . , Ik ′′

where the (ensure . . .) and (maintain . . .) parts are optional, and the θi are formulas generated
by the following grammar:

θ L | ∀x. α(x,y)→ θ | ∃x. α(x,y)∧ θ | θ∧ θ | θ∨ θ for all L ∈ L, x,y,α(x,y)

and the Ij are pre, quantifier-free formulas of the form

I α1(x,y1)→ . . . αq(x,yq)→ ψ q > 0

such that 〈ψ〉 ⊆ {x,y1, . . . ,yq} and for every dynamic literal L in ψ, 〈L〉 = {x}.

�

Before we explain how a program corresponds to a formula on transitions, we give an
example of a simple program:
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Example.

⊕Link(x.s,y.t)∧ E(x) ; Link(x.s,y.t)∧⊕Active(x)
ensure

Link(z.s,w.t)→ E(z)→ (E(w)∧ Open(z.s))

where x.s,y.t, . . . are syntactic sugar for terms like s(x). This program has two rules. The first
can add a Link between two s and t sites if the parent of the s site is an Enzyme. The second
can make an element Active if its s site is linked to a t site.

In addition, there is an invariant which says that for all elements z,w linked through their
respective sites s and t, if z is an Enzyme then w must also be an Enzyme and the site s of z
must be Open. �

We will now define the formulas induced by programs. First, we add some program P as an
implicit paramter:

Implicit parameter P θ1; . . . ; θk ensure I1, . . . , Ik ′ maintain Ik ′+1, . . . , Ik ′′ is a program.
Definition.

Support0,D SupportD ∧ Support0
�

As a reminder, SupportD means that a transition is supported and that if an element is in any
dynamic property from Dyn then it is in Has, and if an element is in any dynamic property
from Dyn? then it is in Has?. Support0 means that a transition is supported at the level of trees,
that each, each tree is at least fully in Has or fully in Has?.
Definition. P induces a formula, φP:

Invs
∧

16j6k ′
∀(Ij ∧ I?j )∧

∧
k ′+16j6k ′′

∀(Ij → I?j ) Context Tn ∧ Support0,D ∧ Invs

φP
∨

16i6k

↓(θi ∧ Context)

�

In P, each θi is a local reaction: every quantification is guarded, so the formula cannot say
anything beyond a neighbhood of the interpretation of the variables. The I’s are both “state”
formulas (in the sense that they either not use Dyn or not use Dyn?) and purely universal. They
are separated in two sequences.

Members of the first are interpreted as (I∧ I?), i.e. a constraint that should be true at every
step of a run. For instance, suppose an element must at least be phosphorylated to be considered
“active”. We can write (Active(x)→ Phos(x))∧ (Active(x)→ Phos(x))?.

Members of the second sequence are interpreted as (I → I?), a constraint that should not
vary throughout a run. For instance, suppose that some existing program is not supposed
to influence the phosphorylation state of the elements throughout the run. We can write
P∧ (Phos→ Phos?)∧ (¬Phos→ ¬Phos?) to make sure that it is the case.

5.2. · ρ̀ φP

In this section, we show that program formulas are ρ̀-provable. The θi part is trivial.
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Lemma 5.2.1. For each θi, ρ̀ θi.

Proof. By induction on the structure: if a literal, use literalρ, if a disjunction use disjρ, if
a conjunction use conjρ. If a guarded universal quantification use ∀guardρ, if a guarded
existential quantification use ∃guardρ.

The following lemma shows that invariants a ρ̀-provable. Note that the conditions are weaker
than those given in the definition of program: the free variables in dynamic literals of ψ do not
have to all be x.

The difficulty here is that we want unguarded universal quantification, and all we have are
universally quantified clauses thanks to the rule clauseρ. We present the idea with an example.
Consider the formula

F(x,y) Link(x,y)→ (A(x)∧K(y))

We show · ρ̀ F→ F?. First, note that

F(x,y) ≡ C1(x,y)∧C2(x,y)
C1(x,y) ¬Link(x,y)∨ A(x)

C2(x,y) ¬Link(x,y)∨K(y)

And both GC1 and GC2 are connected. Now we have

F(x,y)→ F?(x,y)
≡ (C1(x,y)∧C2(x,y))→ (C?

1(x,y)∧C?
2(x,y))

≡
(
C?
1(x,y)∨ Link(x,y)∨ Link(x,y)

)
∧
(
C?
1(x,y)∨ Link(x,y)∨¬K(y)

)
(1)

∧
(
C?
1(x,y)∨¬A(x)∨ Link(x,y)

)
∧
(
C?
1(x,y)∨¬A(x)∨¬K(y)

)
(2)

∧
(
C?
2(x,y)∨ Link(x,y)∨ Link(x,y)

)
∧
(
C?
2(x,y)∨ Link(x,y)∨¬K(y)

)
(3)

∧
(
C?
2(x,y)∨¬A(x)∨ Link(x,y)

)
∧
(
C?
2(x,y)∨¬A(x)∨¬K(y)

)
(4)

We have avoided making boolean simplification. Each of the clauses above also has a
connected graph. For the second clauses lines (3) and (4), C?

i (x,y) contains K(y), so the clause is
valid. All the other clauses are great:for those on lines (1) and for the firsts of lines (2),(3) and
(4), it is because they contain both Link(x,y) and ¬Link?(x,y). For the second clauses of lines (2)
and (3), it is because they contain both ¬A(x) and A?(x). Since they are great, they are provable
and the rest is by conjρ and the rest is because ∀ distributes over ∧.

We now give the proof for the general case:

Lemma 5.2.2. If q > 0 and φ is a pre, quantifier-free formula of the form

α1(x,y1)→ . . .→ αq(x,yq)→ ψ

such that 〈ψ〉 ⊆ {x,y1, . . . ,yq}, then · ρ̀ ∀φ→ φ?, · ρ̀ ∀φ? → φ and · ρ̀ ∀φ∧φ?.

Proof. We first show · ρ̀ φ→ φ?. Let C ′1, . . . ,C ′k be clauses such that ψ ≡
∧
j C
′
j.

φ is equivalent to
∧
16j6k Cj where Cj C ′j ∨

∨
i ¬αi(x,yi). Note that due to the proviso on

〈ψ〉, each GCj is connected We can also write each Cj as Lj.1 ∨ . . .∨ Lj.mj, with each Lj.i a literal
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and mj the size of Cj. Now:

φ→ φ? ≡

 ∧
16j6k

Cj

→
 ∧
16j6k

C?
j


≡

∧
16j6k

C?
j ∨

∨
16j6k

¬Cj

≡
∧

16j6k

∧
16i16m1

· · ·
∧

16ik6mk

C?
j ∨ L1.i1 ∨ . . .∨ Lk.ik (5.1)

Take any clause Dj.i1. ··· .ik C?
j ∨ L1.i1 ∨ . . .∨ Lk.ik in (5.1). Each contains C?

j , so GDj.i1 . ··· .ik
is

connected. Now consider Lj.ij . By definition L?j.ij ∈ C?
j . If Lj.ij = L?j.ij , Dj.i1. ··· .ik ≡ > and we

remove it. Otherwise Lj.ij ∈ Dyn(Dj.i1. ··· .ik) and L?j.ij ∈ Dyn
?(Dj.i1. ··· .ik), so Dj.i1. ··· .ik is great

and we keep it. Let Dk1 , . . . ,Dks be the great clauses we kept.

clauseρ
D◦k1 ρ̀ ∀Dk1

clauseρ
D◦k2 ρ̀ ∀Dk2

conjρ
D◦k1 ,D◦k2 ρ̀ (∀Dk1)∧ (∀Dk2)

. . .
clauseρ

D◦ks ρ̀ ∀Dks
conjρ

D◦k1 , . . . ,D◦ks ρ̀ (∀Dk1)∧ . . .∧ (∀Dks)

By the above proof, we get · ρ̀ φ → φ?. For φ? → φ, swap the stars in (5.1): again using Lj.ij ,
each clause is either valid or great and the rest follows.

Finally, each C?
j is great, so (as above) by repeated application of clauseρ and conjρ, ρ̀ ∀φ?.

Since we know · ρ̀ ∀φ? → φ and since φ∧φ? ≡ φ? ∧ (φ? → φ), we get · ρ̀ ∀φ∧φ? using conjρ.

Lemma 5.2.3. · ρ̀ Tn

Proof. Tn contains no dynamic literal and a single bound variable, so when in CNF, each clause
is great; repeated application of clauseρ and conjρ yields · ρ̀ Tn, up to equivalence.

For Symlink and Funlink, we apply lemma 5.2.2 as both are the form ∀φ∧φ? with φ as the
lemma requires.

Lemma 5.2.4. · ρ̀ φP

Proof. First, Support0,D ≡ Support ∧ ∀Has0 ∧ Has?0 ∧ SuppD ∧ Supp?D and by lemma 5.2.2, ρ̀

∀Has0 ∧ Has?0 and ρ̀ ∀SuppD ∧ Supp?D. Moreover, by lemma 5.2.3, · ρ̀ Tn. By lemma 5.2.1, ρ̀ θi
and for each Ij, again by lemma 5.2.2, · ρ̀ ∀(Ij∧ I?j ) and · ρ̀ ∀(Ij → I?j ). Note that (unlike in lemma
5.3.4), context matters since ρ̀ has no weakening and disjρ is additive. Modulo equivalence to
the right of ρ̀, we get:

...
ρ̀ θi

...
J1 ρ̀ Invs

...
J2 ρ̀ Tn

...
J3 ρ̀ ∀Has0 ∧ Has?0

...
J4 ρ̀ ∀SuppD ∧ Supp?D

conjρ
(5)

J1, J2, J3, J4 ρ̀ θi ∧ Invs ∧Tn ∧ ∀Has0 ∧ Has?0 ∧ SuppD ∧ Supp?D
circumρ

J1, J2, J3, J4 ρ̀ ↓
(
θi ∧ Invs ∧Tn ∧ Support0,D

)
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Now let φi ↓
(
θi ∧ Invs ∧Tn ∧ Support0,D

)
,

J1, J2, J3 ρ̀ φ1 · · · J1, J2, J3 ρ̀ φk
disjρ

(k−1)

J1, J2, J3 ρ̀ φP

So by BoolC, · ρ̀ φP.

5.3. · C̀ φP

Here we show that program formulas are C̀-provable.

Lemma 5.3.1. For each θi, · C̀ θi.

Proof. By induction on the structure: if a literal, use DynamicC or StaticC, if a conjunction or a
disjunction use BoolC together with WeakC if needed. If a guarded existential quantification
use ∃-GuardC. Finally, if a guarded universal quantification:

V,d C̀ θ
′
i GuardC

V \ {x},d ′ C̀ α(x,y)→ θ ′i ∀C
V \ {x},d ′ C̀ ∀x. α(x,y)→ θ ′i

Where d ′ > d.

The following lemma shows that invariants a ρ̀-provable. Note that the conditions are weaker
than those given in the definition of program: the free variables of ψ do not have to be included
in {x,y1, . . . ,yq}.

Lemma 5.3.2. If q > 0 and φ is a pre, quantifier-free formula of the form

α1(x,y1)→ . . .→ αq(x,yq)→ ψ

such that for every dynamic literal L in ψ, 〈L〉 = {x}, then · C̀ ∀φ→ φ? and · C̀ ∀φ∧φ? .

Proof. We first show · C̀ ∀φ∧φ?.
We start with {x}, 0 C̀ ψ

?. Wlog assume ψ is in negation normal form. By induction on the
structure of ψ?: If a conjunction or disjunction, apply WeakC as needed, then BoolC. If a literal,
apply DynamicC or StaticC. By assumption all dynamic literals have {x} as variables.

...
{x}, 0 C̀ ψ

?

GuardC
{x}, 0 C̀ α1(x,y1)? → ψ?

... GuardC

{x}, 0 C̀ φ
?

InvariantC∅, 0 C̀ φ∧φ?

... ∀C
∀C∅, 0 C̀ ∀φ∧φ?
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By the above proof we are done for ∀φ∧φ?.
Now, since φ is pre and quantifier-free, repeated applications of StaticC and BoolC yield

∅, 0 C̀ ¬φ (up to equivalence). We get:

...
∅, 0 C̀ ¬φ

...
∅, 0 C̀ φ∧φ?

BoolC∅, 0 C̀ ¬φ∨ (φ∧φ?)

... ∀C
∀C∅, 0 C̀ ∀¬φ∨ (φ∧φ?)

Since φ→ φ? ≡ ¬φ∨ (φ∧φ?), we are done.

Lemma 5.3.3. · C̀ T ′n ∧ Funlink

Proof. Using BoolC, it suffices to show that each conjunct is C̀-provable.
T ′n is purely universal with no dynamic literal, so there is a quantifier-free formula F such

that ∅, 0 C̀ F (using StaticC, BoolC and WeakC) and ∀F ≡ T ′n. The rest is by ∀C.
For Funlink, we can apply lemma 5.3.2 as it has the form

∀(α1(x,y)→ α2(x, z)→ y = z)∧ (α1(x,y)→ α2(x, z)→ y = z)?

and y = z is not a dynamic literal.

Note that Symlink is not C̀-provable.

Lemma 5.3.4. · C̀ φP

Proof. First, Support0,D Support ∧ ∀Has0 ∧ Has?0 ∧ SuppD ∧ Supp?D and by lemma 5.3.2, C̀

∀Has0 ∧ Has?0. By lemma 5.3.1, C̀ θi and for each Ij, again by lemma 5.3.2, e C̀ ∀(Ij ∧ I?j ) and
· C̀ ∀(Ij → I?j ).

Second, Tn T ′n∧Funlink∧Symlink and C̀ T ′n∧Funlink by lemma 5.3.3. Modulo equivalence
and ignoring contexts (there are no context restrictions on BoolC and CircumC), we get:

...

C̀ θi

...

C̀ Invs

...

C̀ ∀Has0 ∧ Has?0

...

C̀ T ′n ∧ Funlink
BoolC

(4)

C̀ θi ∧ Invs ∧ ∀Has0 ∧ Has?0 ∧T ′n ∧ Funlink
CircumC

C̀↓
(
θi ∧ Invs ∧Tn ∧ Support0,D

)
So by BoolC, C̀ φP.
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5.4. Finite compilation of φP

Here we show how C̀ and ρ̀-provability of a program formula means that there is a finite set of
rules with the same execution semantics as the run semantics of the formula.

This preliminary lemmas shows that at the level of rules, reasoning up to iso is enough: since
all operations on rules are defined in terms of morphisms, identities stop being important.

Lemma 5.4.1. If R if a set of rules and R ′ = R up to iso, then execM(R) = execM(R ′) for any
M : Θ.

Proof. It suffices to show in one direction, for each _R step. Suppose R 3 (S1,K,S2)
h'

(S ′1,K ′,S ′2) ∈ R ′, f : (S1,K) → M ′ and M ′ is the pushout of (f,g,S1,S2,M). Let f ′ = f ◦ h
and g ′ = g ◦ h. By lemma 2.4.3 and 2.4.1, f : (S ′1,K ′) → M. It is routine to check that g ′ :
dom(S ′2) \ dom(S2)→ U \ dom(M) is injective and that M ′ is the pushout of (f ′,g ′,S2,S ′2,M)

(just transport the construction of M ′ as the pushout of (f,g,S1,S ′1,M) through h).

Definition. If φ is a formula and there is a set of rules R such that ρ∅(φ) = exec∅(R), φ can be
compiled to R. �

This is the main theorem of the chapter, and the most important of the thesis. It shows
that there is a finite set of rules with execution semantics that correspond exactly to the run
semantics of a program. Since the rules are of bounded size and model checking is decidable,
the proof is constructive (albeit not very practical).

Theorem 5.4.2. φP can be compiled to a finite set of rules.

Proof. Let R rules(P(φP, ‖φP‖)). By lemma 5.4.1 it suffices to show that R/' is finite and that
ρ∅(φP) = exec∅(R).

By lemma 5.2.4, · ρ̀ φP, and ∅ ∈ Init(ψ) for any pre,ψ. Moreover φP ≡ φP ∧ Support0, so by
theorem 3.5.1 ρ∅(φP) = exec∅(R).

By lemma 5.3.4, · C̀ φP so by theorem 4.4.5, φP is (V,d)-preserved for some V,d. By definition
φP implies TnS and and is a disjunction of minimised formulas, so by lemma 4.3.7, P(φP, ‖φP‖)
is finite up to iso, so by definition of rules, R/' is finite.
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6. (Un)decidability modulo n-BFL

This chapter covers the (un)decidability of satisfability for FO Θ-formulas and the elimination
of ↓ from FO[↓].

First, in section 6.1, we show that satisfiability modulo the theory of n-BFL is not decidable.
The proof goes through a standard domino reduction.

Second, in section 6.2, we show that satisfiability modulo that theory is decidable in ∃∗∀∗
fragment. Without function symbols, this fragment is called the Bernays-Schönfinkel-Ramsay
class and decidability in this class is a classic theorem. All we need to do is show that n-BFLs
functions are so restricted that the original proof still through.

The prenex fragments are used here. As a quick reminder, φ ∈ ∃∗∀∗ means that φ (not
necessarily in FO) is equivalent to some FO formula φ ′ in prenex normal form such that its
quantifier prefix is in the language ∃∗∀∗.

Modulo the theory of n-BFLs, theorem 6.1.6 gives a negative result:

Theorem 6.1.6. FO satisfiability modulo TnS is undecidable for n > 1.

However, there is a fragment where satisfiability is decidable, given by theorem 6.2.3:

Theorem 6.2.3. For n > 0, satisfiability of formulas in ∃∗∀∗ is decidable modulo Tn.

Which is nice from a querying perspective, since all programs are C̀-provable and theo-
rem 7.3.8 says:

Theorem 7.3.8. If V ;d C̀ φ, then φ∧Tn is in both ∃∗∀∗ and ∀∗∃∗.

6.1. Undecidability

We show that FO-satisfiability (finite or not) is undecidable for n-BFLs by a reduction from
domino problems. The specific approach is inspired by [Grädel, 1999].

We recall the definitions of domino systems and their tilings below, but first give some
intuition: a domino system is given by a set of colored, square dominoes D. Dominoes are
available in infinite supply, but there are finitely many colors. They must be tiled over the
infinite plane following horizontal and vertical constraints. Horizontal constraints define which
colors can touch horizontally; vertical constraints define which colors can touch vertically. A
solution to a domino system is a tiling of the plane with the dominoes of D which respects
both horizontal and vertical constraints. The problem of finding tilings for domino systems is
undecidable.

Definition. A domino system D is a triple (D,H,V) with D finite and H,V two binary relations
on D. D tiles N2 when there exists a tiling τ : N2 → D such that for all x,y ∈N:

1. (τ(x,y), τ(x+ 1,y)) ∈ H

2. (τ(x,y), τ(x,y+ 1)) ∈ V
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6. (Un)decidability modulo n-BFL

Moreover, τ is periodic with horizontal period h > 0 and vertical period v > 0 if for all x,y ∈N,

τ(x,y) = τ(x+ h,y) = τ(x,y+ v)

�

Definition (Conservative reduction class). A recursive fragment of FO X is a conservative reduction
class if there is a recursive function g from FO to X such that for all FO-formulas ψ, ψ is (finitely)
satisfiable iff g(ψ) is (finitely) satisfiable. �

For more on reduction classes, see [Börger et al., 1997]. Since satisfiability is undecidable in
full FO, a conservative reduction class has undecidable satisfiability.

Theorem 6.1.1 (Semi-conservative reduction from the domino problem). Let X be a recursive
fragment of FO. X is a conservative reduction class if there exists a recursive function that
associates with every domino system D a formula ψD ∈ X such that

1. If D admits a periodic tiling of N2, then ψD has a finite model.

2. If D does not tile N2, then ψD is unsatisfiable.

Proof. This is Corollary 3.1.8 in [Börger et al., 1997], chapter 8, p.91.

Our class X is the set of FO formulas of the form φ∧TnS, so it is recursive.

Domino theory

Let D (D,H,V) be a domino system. We will define a BFL signature that can encode domino
systems. Then, we will define a formula which is finitely satisfiable when D has a periodic
tiling, and which is unsatisfiable when D has no tiling.

Definition. The domino signature of D is the BFL signature ΣD (Dyn,Dyn?,Stat) where

Dyn Has, Link
Dyn? Has?, Link?

Stat D,N,I,H,J, parent

D is a tuple of unary predicate symbols with underlying set D (the ordering is not important),
and N,I,H,J are unary function symbols. �

D names the roots in ΣD-structures. Each domino will be represented by a tree. The root
will have its color (some element of D) as a property. To represent adjacency, roots will have 4

children (one for each direction). The unary functions N,I,H,J are for the directions up, right,
down, left, respectively. We define the set of direction symbols ∆ {N,I,H,J}.

We also will need to express “the inverse direction”. Let

N⊥ H I⊥ J

H⊥ N J⊥ I

We sometimes omit parentheses after directions for readability. For instance, we may write Nx
instead of N(x).
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Grid theory A grid is a graph of trees connected only through their HN or their IJ vertices, and
where the N I diagonal leads to the same tree as the I N diagonal.

Grids give us a canvas to set the dominos:

Grid ∀x. parent(x) = x→
∧ ∃u, r,d. Link(Nx,Hu)∧ Link(I u,J d) (6.1)
∧ Link(I x,J r)∧ Link(Nr,Hd) (6.2)

The first line restricts the condition to tree roots (recall that an n-BFL can be seen as a forest
of bounded-height trees. Tree vertices are structure elements). For every root a, line (6.1) forces
the existence of a link between the up-child of a and the down-child of some other root u (for
up-root). It also forces the existence of a link between the right-child of a and the left-child of
some other root r (for right-root). Finally, it forces the existence of a root d (for diagonal-root)
which completes the pattern. See figure 6.1 for an illustration of the effect of Grid.

Figure 6.1.: The effect of Grid

Definition. For any n-BFL A : ΣD let ρA ⊆ dom(A) be the tree roots of GA. �

The next lemma provides function in the metalanguage which correspond to going through
a diagonal in a domino tiling. Since the lemma shows that the functions traverse any 1-BFL
satisfying Grid and the way we take the diagonal (right-up or up-right) is irrelevant, it implies
that grids are well-formed.

Lemma 6.1.2. For any A satisfying T1S and Grid, there are functions upA, rightA : ρA → ρA such
that:

• upA ◦ rightA = rightA ◦ upA

• For all a ∈ ρA (JIKA(a), JJKA(rightA(a))) ∈ JLinkKA

• For all a ∈ ρA (JNKA(a), JHKA(upA(a))) ∈ JLinkKA

Proof. For a ∈ ρA, by Grid(6.1), Grid(6.2) there is ua ∈ dom(A) such that A |= Link(Na,Hua).
Since JLinkKA is functional, ua is uniquely defined.

Similarly, there are unique ra and da such that A |= Link(I ua,J da), A |= Link(I a,J ra),
and A |= Link(Nra,Hda). We define

rightA(a) ra

upA(a) ua

Now for the commutativity, we have by definition rightA(ua) = da and upA(ra) = da, so
rightA(upA(a)) = upA(rightA(a)).
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The next lemma uses rightA and upA to define a new function which directly connects the
plane and 1-BFLs that satisfy Grid.

Lemma 6.1.3. If A � T1S ∧ Grid, there is h : N2 → ρA such that for i, j ∈N,

h(i+ 1, j) = rightA(h(i, j))
h(i, j+ 1) = upA(h(i, j))

Proof. Take any a ∈ ρA. Define h for i, j > 0:

h(i, j) rightiA(upjA(a))

Were the i and j exponents denote repeated function application. We have:

h(i+ 1, j) = righti+1A (upjA(a)) = rightA(h(i, j))

h(i, j+ 1) = rightiA(upj+1A (a)) = upA(rightiA(upjA(h(a)))) = upA(h(i, j))

With the central equality on line 2 making use of lemma 6.1.2.

Domino theory Once a grid is well-formed, it should contain dominos that tile the plane
according to the horizontal constraints H and the vertical constraints V : a coherent grid w.r.t. V and
H ensures that nodes connected through H

N respect V and those connected through IJ respect H.
The theory associated to D is Domino. Note that this is the first time formulas are influenced

by D (however, the signature ΣD already depended on D).

Domino ∀x. parent(x) = x→Horizontal(x)∧ Vertical(x)∧
∨
N∈D

N(x)∧
∧

N ′ 6=N
¬N ′(x)


Horizontal(x)

∧
N∈D

N(x)→
∨

(N,N ′)∈H
∃y. Link(I x,J y)∧N ′(y)

Vertical(x)
∧
N∈D

N(x)→
∨

(N,N ′)∈V
∃y. Link(Nx,Hy)∧N ′(y)

As before for well-formed grids, we define a function in the metalanguage which maps a
well-tiled plane with a well-tiled grid:

Lemma 6.1.4. If A : ΣD satisfies T1S, Grid and Domino, there is a function τA : ρA → D such that
for all a ∈ ρA:

1. (τA(a), τA(rightA(a))) ∈ H

2. (τA(a), τA(upA(a))) ∈ V

Proof. Take any a ∈ ρA. By Domino, there is a single N ∈ D such that a ∈ JNKA. Define
τA(a) N.

For any a ∈ ρA,with φ(x) Link(I a,J x), by lemma 6.1.2 we have A |= φ(rightA(a)) and by
functionality of Link that is only the case for rightA(a). So by HorizontalH, A |= N ′(rightA(a))
for some N ′ such that (N,N ′) ∈ H. By definition of τA, τA(rightA(a)) = N

′, so we are done.
The case for V is similar.
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6.1. Undecidability

Domino model Suppose D admits a periodic tiling τ with horizontal period h and vertical
period v. Let T be the ΣD-structure with domain of size 5hv.

dom(T) {[i, j], [i, j].δ | 1 6 i 6 h, 1 6 j 6 v, δ ∈ ∆}

Has(T) T

Note that “[i, j]”, “[i, j]. J”, and so on are just suggestively-named symbols. For 1 6 i 6 h,
1 6 j 6 v, and δ, δ ′ ∈ ∆ we specify the function JδKT to be:

JδKT([i, j]) [i, j].δ
JδKT([i.j].δ ′) [i, j].δ ′

and JLinkKT to be the smallest symmetric relation such that:

([i, j]. I, [i+ 1 mod h, j]. J) ∈ JLinkKT
([i, j].N, [i, j+ 1 mod v].H) ∈ JLinkKT

and let JparentKT be the parent relation of GT on non-roots and the identity on roots; this is well
defined since GT is trivially a tree.

This gives us a discrete h by v torus. Next, we define the predicates JNKT for N ∈ D according
to τ. Remembering that by definition, there is a N ∈ D for every N ∈ D and vice versa, we
define

[i, j] ∈ JNKT iff τ(i mod h, j mod v) = N

Lemma 6.1.5. T |= T1S ∧ Grid ∧ Domino

Proof.

T |= T1S It suffices to show that T is a supported 1-BFL.

A is a supported n-BFL with symmetric and functional link relations.

Trivially T is a 1-BFL with roots [i, j] and leafs [i, j].δ with all elements in JHasKT. JLinkKT
is symmetric by definition. Take some a of the form [i, j].δ. If δ ∈ {I,N}, symmetrisation
had no impact and there is a single b such that (a,b) ∈ JLinkKT. If δ =J, there is no
1 6 i ′ 6= i 6 h such that i+ 1 mod h = i ′ + 1 mod h since i itself ranges from 1 to h, so a
has a single image in JLinkKT. The case is similar when δ = H.

T |= Grid Any root is of the form [i, j] so by definition of JLinkKT and the four JδKT, the desired
witnesses u, r,d are respectively [i, j+ 1 mod v], [i+ 1 mod h, j], and [i+ 1 mod h, j+ 1 mod
v].

T |= Domino First, roots belong to a single NT predicate because τ is h, v-periodic, so the last
part of Domino is satisfied.

For Horizontal, only an element of the form [i, j] may have a label N from D. The desired
witness y is provided by [i + 1 mod h, j]: by definition of JIKT, JJKT and JLinkKT we
have (JIKT[i, j], JJKT[i + 1 mod h, j]) ∈ JLinkKT and since τ tiles D and is h, v-periodic,
[i+ 1 mod h, j] ∈ JN ′KT for some N ′ such that (N,N ′) ∈ H.

The case for Vertical is similar.
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6. (Un)decidability modulo n-BFL

Theorem 6.1.6. FO satisfiability modulo TnS is undecidable for n > 1.

Proof. Let D = (D,H,V) be a domino system. Let ψ T1S ∧ Grid ∧ Domino be a formula under
signature ΣD. To make use of theorem 6.1.1, we first note that the finite structure A(τ) satisfies
ψ by lemma 6.1.5.

Then suppose A |= ψ for some ΣD-structure A. By lemmas 6.1.3 and 6.1.4 we can define
τ : N2 → D by τ(i, j) τA(h(i, j)) and obtain:

(τ(i, j), τ(i+ 1, j)) = (τA(h(i, j)), τA(h(i+ 1, j))) = (τA(h(i, j)), τA(rightA(h(i, j)))) ∈ H
(τ(i, j), τ(i, j+ 1)) = (τA(h(i, j)), τA(h(i, j+ 1))) = (τA(h(i, j)), τA(rightA(h(i, j)))) ∈ V

So D tiles N2 with τ.

6.2. Decidable class

In this section we show that modulo TnS, formulas in ∃∗∀∗ have decidable satisfiability.
Definition. Given a signature Σ with Herbrand universe W and ≡ an equivalence relation on
W, a ≡-Herbrand structure A is a Σ-structure with universe W/≡ such that for all constants
c of Σ, JcKA = [c]≡, and for all function symbols f of Σ with arity k and all ground terms
t1, ..., tk, JfKA([t1]≡, ..., [tk]≡) = [f(t1, ..., tk)]≡. A ≡-Herbrand structure that satisfies a formula is
a ≡-Herbrand model for it. �

Lemma 6.2.1 (Folklore). A sentence with equality in Skolem normal form is satisfiable iff it has
a ≡-Herbrand model.

Proof. A sentence satisfied by a ≡-Herbrand structure is satisfiable. Now assume a sentence in
Skolem normal form φ satisfied by a structure A. For any ground Σ-term t, JtKA is its image in
A.

We proceed by induction on the number n of universal quantifiers in φ.
Take the equivalence relation on W defined by t ≡ t ′ whenever JtKA = Jt ′KA and let A ′ be the

≡-Herbrand structure where for every relational symbol R of Σ with arity k, and any k-tuple of
ground terms (t1, ..., tk), ([t1]≡, ..., [tk]≡) ∈ JRKA ′ iff (Jt1KA, ..., JtkKA) ∈ JRKA. This is well-defined
since ≡ on W respects equality on A’s universe.

If n = 0, note that the truth value of all atoms (equality and predicates) is the same in A ′ and
A by construction. If A |= ∀x. ψ(x) with the induction hypothesis assumed on ψ, we have by
substitution A |= ψ(t) for all ground terms t, by induction A ′ |= ψ(t) for all ground terms t, and
thus A ′ |= ∀x. ψ(x).

Lemma 6.2.2. If Σ = (Σ ′, c) where Σ ′ is a BFL signature and c are constant symbols, if A : Σ is a
≡-Herbrand model of Tn then A is finite.

Proof. We show: if A |= Tn then ≡ is of finite index.
For any constant c and any ground term t of Σ, if t contains c then [c]≡ and [t]≡ are in the

same tree of GA. This is easily shown by structural induction on t. There are finitely many c in
Σ, so there are finitely many trees in GA.
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6.2. Decidable class

Additionally, by lemma 4.1.1, each tree of GA is finite. So GA is finite. A has the same domain,
so it is as well.

We show decidability under a triple restriction : syntactic fragment, signature class, and
theory.

Theorem 6.2.3. For n > 0, satisfiability of formulas in ∃∗∀∗ is decidable modulo Tn.

Proof. First, note that Tn ∈ ∃∗∀∗. For φ ∈ ∃∗∀, ψ φ∧Tn can equisatisfiably be turned into a
Skolem normal form sentence ψ ′ (replacing variables with constants). By lemmas 6.2.1 and
6.2.2, ψ ′ is satisfiable iff it is finitely satisfiable.
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7. Change minimality in FO

We then move on to definability questions. In section 7.1, we introduce unified circumscription.
Generally speaking, circumscription is a 2nd-order schema parameterised by an order o on a
class of structures. It takes as input a formula and produces a 2nd-order formula which has,
as models, the o-minimal models of φ. There are various forms of circumscription; here we
introduce a reasonably general variant which suits our purposes.

Then in section 7.2, we show how the operator ↓ can be expressed by instantiating unified
circumscription on the E order. This provides a syntactic, 2nd-order definition of ↓. The
following section (7.3.4) is about rewriting this formula to eliminate its 2nd-order quantifiers
under some conditions.

Finally, we show that the theory of n-BFLs (and in particular the functionality of Link and
Link?) brings even more simplification: ρ̀-provable minimised formula are definable in the ∃∗∀∗
and ∀∗∃∗ fragments of first-order logic.

7.1. Unified circumscription

In this section, we define unified circumscription syntactically and prove that for an instanciation
of unified circumscription on a given order, the models of the circumscribed formula are indeed
the minimal models of the original formula along that order.

We now work in second-order logic.
Generally speaking, the purpose of circumscription is to denote through second-order means

the minimal models of some FO formula, along a given order. For instance, McCarthy’s
domain circumscription [McCarthy, 1980] minimises the size of the domain but maintains
every predicate and function interpretation on the remaining elements. Also originated by
McCarthy, predicate circumscription [McCarthy, 1986] minimises the extent of some minimised
predicates – but leaves the other predicates and the domain untouched. There are many
forms of circumscription; the one we introduce here combines general domain circumscription
[Doherty et al., 1998] and parallel predicate circumscription (predicate circumscription extended
to the product of subset ordering for multiple predicate interpretations).

With unified circumscription, a signature Σ is partitioned into tuples of predicates and
functions. Some predicates are minimised. The domain is minimised as well. Some predicates are
fixed: they may not change at all. Other predicates, as well as some functions, are restricted: they
may not change on the minimised domain but may reduce their domain of definition if the
domain is reduced. Finally, some predicates and functions are varying: they may change in any
way. As we will see, once a partition of Σ has been established, this gives rise to an order � on
Σ-structures. Then, given a Σ-formula φ, the circumscription of φ is simply the set of �-minimal
models of φ.

In this section, Σ is assumed to be a signature of the form (Pmin,Prestr, frestr,Pvar, fvar,Pfix)

where the P• are predicate tuples and the f• are function tuples. We will define a partial order
on Σ-models where :

• domains and predicates in Pmin are minimised
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7. Change minimality in FO

Figure 7.1.: Unified circumscription example.

• predicates in Prestr and functions in frestr are restricted

• predicates in Pvar and functions in fvar can vary

• predicates in Pfix are fixed

Definition. If A,B : Σ, A � B whenever :

(a) dom(A) ⊆ dom(B)

(b) JPminKA ⊆ JPminKB

(c) JPrestrKA = JPrestrKB � dom(A)

(d) JfrestrKA = JfrestrKB � dom(A)

(e) JPfixKA = JPfixKB

�

There is no condition of Pvar and fvar.
To give some intuition, we try to make the domain and predicates in Pmin as small as possible

given that Pfix must not change at all, and that Prestr and frestr must not change on the remaining
domain elements.
Example. Let the tuples that partition Σ each have a single predicate: Pmin = (min),Prestr =

(restr),Pvar = (var),Pfix = (fix), frestr = (f), and consider the following formula and models:

φ ∀x. min(x)∨ var(x)
A ({a,b, c,d}, min = {a}, fix = {a}, var = {b, c,d}, restr = {b, c}

f = a 7→ b,b 7→ b, c 7→ d,d 7→ d)

B ({a,b}, min = ∅, fix = {a}, var = {a,b}, restr = {b}, f = a 7→ b,b 7→ b)

As illustrated in figure 7.1, we have B ≺ A, and as a matter of fact B is �-minimal among
models of φ. a ∈ JfixKA, so circumscription may not lose a, and since JfKA(a) = b and f is
restricted, b may not disappear either. On the other hand, domain minimisation drops both c
and d: c,d /∈ dom(B). We have b ∈ JminKA, but by φ b /∈ JminKB is allowed as long as b ∈ JvarKB.
Since min is minimised, this is what happens. Finally, unlike fix, restr does not prevent its
members from being removed (c /∈ dom(B)), but must remain unchanged on the circumscribed
domain (so b ∈ JrestrKB and a /∈ JrestrKB). �

Definition (Similarity). Two signatures Σ, Σ ′ are similar when they have the same length and
symbols in the same position have the same nature (relational or functional) and the same
arity. �
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7.1. Unified circumscription

Definition (Substitution). For any two symbols X, Y, {X 7→ Y} is the syntactic map from X to Y,
and for any formula φ, φ{X 7→ Y} is φ with every instance of X replaced by a Y. An extension
of the map such as {X 7→ Y,W 7→ Z} for W,Z two other symbols is the simultaneous syntactic
replacementof X by Y and W by Z. For any two similar signatures Σ, Σ ′, {Σ 7→ Σ ′} is the
subtitution that simultaneously replaces the ith symbol of Σ ′ with the ith symbol of Σ for every
position i of Σ. �

With a first-order formula φ, we can characterise the �-minimal elements satisfying φ with a
2nd-order formula

�

φ:
Definition (

�

as a 2nd-order formula). If a signature Σ has been partitioned such that Pmin,Pfix, . . .
are defined and φ is a Σ-formula, then:

�

φ φ ∧

∀D,M,V, f.(
dom(D, f)∧M ⊆ Pmin ∧φ[D]{Pmin 7→M,Pvar 7→ V, fvar 7→ f}

)
(7.1)

→
(
Pmin ⊆M∧ ∀x.D(x)

)
(7.2)

The right conjunct requires that any structure �-smaller than the “current” one is not strictly
so – and therefore, equal to the current structure.

It does so by quantifying over possible subdomains (D) as well as minimised and varying
predicates & functions (M,V, f).

The left-hand side of the implication (line (7.1)) introduces the assumption that D is a
subdomain; that M is indeed smaller than the minimised predicates Pmin, and that φ is true in
this subdomain with the new minimised and varying predicates & functions.

The right-hand side of the implication (line (7.2)) says that the subdomain actually covers the
current domain, and that M = Pmin.

• The quantified symbols are D, unary relational; M is similar to Pmin, V is similar to Pvar,
and f is similar to fvar.

• φ[D] is φ where every quantifier has been simultaneously guarded by D. For any atomic
formula A, any first-order formulas ψ,ψ ′, any ⊕ ∈ {∧,∨}:

A[D] A (¬ψ)[D] ¬ψ[D] (ψ⊕ψ ′)[D] ψ[D]⊕ψ ′[D]

(∀x. ψ)[D] ∀x. D(x)→ ψ[D] (∃x. ψ)[D] ∃x. D(x)∧ψ[D]

for any variable x, any formula ψ.

• dom specifies that D behaves like a nonempety domain that covers Pfix and the interpreta-
tion of the variables:

dom(D, f) frestr(D) ⊆ D∧ f(D) ⊆ D∧Pfix ⊆ D∧ ∃x.D(x)∧
∧
x∈〈φ〉

D(x)

– For any tuple g of function symbols, and unary predicate D, g(D) ⊆ D means that D
is g-closed:

g(D) ⊆ D
∧
f∈g
∀xf.

( ∧
x∈xf

D(x)

)
→ D(f(xf))
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7. Change minimality in FO

where xf is a tuple of size the arity of f. Note that whenever f is a constant (i.e. of
arity 0), the associated conjunct reduces to D(f).

We do not write the proof of correspondence between g(D) ⊆ D as a logical specifi-
cation and the notion in metalanguage.

– For any tuple P of predicate symbols, and unary predicate D, P ⊆ D means that any
element mentioned in some S ∈ P is also in D:

P ⊆ D
∧
S∈P
∀xS. S(xS)→

∧
x∈xS

D(x)

where xP is a tuple of size the arity of P.

We do not write the proof of correspondence between P ⊆ D as a logical specification
and the notion in metalanguage.

– Finally, for any two tuples of predicate symbols P,Q of same size and pointwise
arity, P ⊆ Q means that P is product-wise included in Q. First, some notation : for a
symbol S at position i in P, QS is the symbol at position i in Q. By assumption it has
the same arity.

P ⊆ Q
∧
S∈P
∀xS. S(xS)→ QS(xS)

where xS is a tuple of size the arity of S.

We do not write the proof of correspondence between P ⊆ Q as a logical specification
and the notion in metalanguage.

�

Notation. In the sequel, note that if an interpretation maps symbols of the signature, the
interpretation overrides the default meaning of the symbols. For instance, in the signature
(P) where P is a unary relational symbol and with the model A (dom(A) {a}, JPKA = {a}),
consider:

A � P(a)

A,P 7→ ∅ 2 P(a)

�

Our goal is to prove that a structure A is �-minimal among models of φ iff A �

�

φ. The
following technical lemma is used in both directions. It shows that for two structures A E B, A is
a model of φ iff B satisfies a version of φ where every quantification is relativised to dom(A)

and every predicate/function is interpreted as in A.

Lemma 7.1.1. If A,B : Σ, φ is a first-order formula, A � B, M,V ′,g are respectively similar to
Pmin,Pvar, fvar, and

JPminKA =M ′ � dom(A) JPvarKA = V ′ � dom(A) JfvarKA = g � dom(A)

µ D 7→ dom(A),Pmin 7→M ′,Pvar 7→ V ′, fvar 7→ g

then for all ν : 〈φ〉 → dom(A):
A,ν |= φ iff B,ν,µ |= φ[D]
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7.1. Unified circumscription

Proof. First, we show that for any term t, JtKA,ν = JtKB,ν,fvar 7→g ∈ dom(A).

• If t = x, by Im(ν) ⊆ dom(A) and dom(A) ⊆ dom(B) we are done.

• If t = f(t1, ..., tn) with n > 0 and f ∈ frestr, using the induction we just need f(A) = f(B) �
dom(A), which is given by JfrestrKB � dom(A) = JfrestrKA.

• If t = f(t1, ..., tn) with n > 0 and f ∈ fvar, using the induction we just need JfKA =

JfKfvar 7→g � dom(A), which is given by JfvarKA = g � dom(A).

Now by induction on φ:

• (Equality) t1 = t2, since for any t, JtKA,ν = JtKB,fvar 7→g we are done.

• (Other atomics) S(t), with t a tuple of terms. By the previous fact, we need P = Q � dom(A)

for (P,Q) ∈ {(JPminKA,M ′), (JPvarKA,V ′), (JPrestrKA, JPrestrKB), (JPfixKA, JPfixKB)}. This is
all by hypothesis.

• (Bool) The case of propositional connectives is trivial.

• (∀,∃) For quantifiers, thanks to negation we treat ∀ only wlog. If A,ν |= ∀x. ψ then for
any a ∈ dom(A), A,ν, x 7→ a |= ψ and the induction gives us B,ν, x 7→ a,µ |= ψ[D]. Since
µ(D) = dom(A), we get B,ν,µ |= ∀x. D(x)→ ψ[D], i.e. B,ν,µ |= (∀x. ψ)[D].

The other direction works the same.

The main lemma of this section shows the semantics-syntax correspondence of

�

and �.
The key lemma is lemma 7.1.1 in both directions. From syntax to semantics, given A,µ �

�

φ,
the proof uses the key lemma to put the “innards” of a would-be smaller strictly model B as
instance of the second-order quantifiers of

�

φ, which leads to A � B. From semantics to syntax,
we do the same inverse, taking all instance sof the second-order quantifications and showing,
through minimality and the key lemma, that they verify the inside the

�

φ.

Lemma 7.1.2. If φ is a first-order formula, the models of

�

φ are the �-minimal models of φ.

Proof.

(⇒) Suppose A,µ |=

�

φ and let B,µ |= φ, B � A. We want A � B. By definition of

�

φ, we get:

A,µ, D 7→ dom(B), M 7→ JPminKB, V 7→ JPvarKB, f 7→ JfvarKB
|= dom(D, f)∧M ⊆ Pmin ∧φ[D]{Pmin 7→M,Pvar 7→ V, fvar 7→ f}

→
(
Pmin ⊆M∧ ∀x.D(x)

)
We show that the left-hand side of the implication holds.
The second conjunct (M ⊆ Pmin) is given by B � A. The third conjunct (φ[D]{. . .}) is given

by lemma 7.1.1, using B,µ |= φ and B � A (note that we apply the lemma with M ′ JPminKA,
V ′ JPvarKA, and g JfvarKA).

Now for the first conjunct (dom(D, f)).
We need A,D 7→ dom(B) |= ∃x. D(x). Since dom(B) is non-empty and dom(B) ⊆ dom(A) by

�, there is some a ∈ dom(A)∩ dom(B).

95



7. Change minimality in FO

We also need dom(B) to be JfrestrKA-closed and JfvarKB-closed. Since JfrestrKB = JfrestrKA �
dom(B) (by �), dom(B) is JfrestrKA-closed. The other is by definition.

We need JPfixKA ⊆ D. Since JPfixKB = JPfixKA (by �) and we have JPfixKB ⊆ dom(B) by
definition, we get JPfixKA ⊆ dom(B).

The left-hand side of the implication being proven, we use the right-hand side. We want
A � B. We have JPminKA ⊆ JPminKB and dom(A) ⊆ dom(B), so A � B indeed.

(⇐) Suppose A is �-minimal among models of φ with interpretation µ for its free variables.
We show A,µ |=

�

φ. By assumption A,µ |= φ. Now take any predicate tuples D ′,M ′,V ′ (with
size and arity matching the symbols in D,M,V) and functions f ′ (with size and arity matching
the symbols in f) such that

A,µ,D 7→ D ′,M 7→M ′,V 7→ V ′, f 7→ f ′

|= dom(D, f)∧M ⊆ Pmin ∧φ[D]{Pmin 7→M,Pvar 7→ V, fvar 7→ f}

Let B : Σ be such that

dom(B) = D ′ JPminKB =M ′ � D ′ JPrestrKB = JPrestrKA � dom(B)

JfrestrKB = JfrestrKA � dom(B) JPvarKB = V ′ � dom(B) JfvarKB = f ′ � dom(B)

JPfixKB = JPfixKA

We must check that B is well-defined.
Using the dom subformula, B is not the empty model since there is at least one element in

dom(B), dom(B) is JfrestrKA-closed, dom(B) is JfvarKB-closed, and we also get JPfixKB ⊆ dom(B).
Since JPminKB ⊆ M ′ ⊆ JPminKA, we get B � A. Using

∧
x∈〈φ〉D(x), we can now apply

lemma 7.1.1 to get B,µ |= φ. By minimality of A among models of φ, this implies A � B, i.e.
JPminKA ⊆ JPminKB =M ′ � D ′ ⊆M ′ and dom(A) ⊆ dom(B) = D ′. Which gives us the desired
conclusion :

A,µ, D 7→ D ′, M 7→M ′

|= Pmin ⊆M∧ ∀x.D(x)

Following [Etherington, 1986] (p.142, Theorem 6.3) and [De Kleer and Konolige, 1989], it is
easy to see that, in addition to relational symbols, formulas that use fixed and varying symbols
can also be minimised, that is: Pmin can also contain formulas that do not use other symbols
from Pmin. To sketch the construction: take a signature Σ partitioned into Pmin, frestr, etc, such
that an order � is defined. Given an FO Σ-formula θ that uses only symbols in (=,Pfix,Pvar), we
define an order �θ: A �θ B if A � B and JθKA ⊆ JθKB. Extend the signature Σ to Σ ′ (Σ,P),
where P is a fresh relational symbol of arity |〈θ〉|. P is added to the tuple Pmin of Σ ′. This gives
rise to an order � ′ on Σ ′-structures. The function f from Σ-structures to Σ ′-structures which
just extends any A : Σ to Σ ′ by adding JPKf(A) JθKA is a bijection between Σ-structures and
Σ ′-models of (∀x. P(x)↔ θ(x)). Moreover a) A �θ B iff f(A) � ′ f(B) and b) for any Σ ′-formula
F and µ : 〈F〉 → dom(A), f(A),µ � F iff A,µ � F ′ where F ′ is F with all atoms of the form P(x)

replaced by θ(x). This applies in particular when F =

�

φ for some FO, Σ ′-formula φ, so the
definition for circumscribed formulas page 93 admits having formulas (and not just symbols) in
Pmin.
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7.2. E-minimality in 2nd-order logic

7.2. E-minimality in 2nd-order logic

In this section we make the simple observation (using the previous section) that the minimisation
operator ↓ can be expressed syntactically as an instance of unified circumscription. Let ∆Dyn
be the tuple of formulas of the form ∆A(x) = ¬(A(x) ↔ A?(x)) for A ∈ Dyn and x a tuple of
variables of size the arity of A. We define an order � using the following mapping:

Pmin = ∆Dyn Prestr = Stat \Statfun Pvar = Dyn
?

Pfix = Dyn frestr = Statfun fvar = ∅

This defines a circumscription order � on Θ-structures.

Lemma 7.2.1. If A,B : Θ, A � B iff A E B

Proof. Cf. definitions for E (p. 34) and � (p. 92): (a) iff (4), (b) iff (3), (c) and (d) iff (2), and
finally (e) iff (1).

We restate the formula for

�

, adapted to the signature Θ and the mapping to Pmin, etc:

ψ1(D,Dyn ′) g(D) ⊆ D∧Dyn ⊆ D∧ (∃x. D(x))∧
∧
x∈〈φ〉

D(x)

∧∆Dyn ′ ⊆ ∆Dyn∧φ[D]{Dyn? 7→ Dyn ′}

ψ2(D,Dyn ′) ∆Dyn ⊆ ∆Dyn ′ ∧ ∀x. D(x)
�

φ = φ ∧ ∀D,Dyn ′. ψ1(D,Dyn ′)→ ψ2(D,Dyn ′)

Where Dyn ′ is a tuple similar to Dyn? and ∆Dyn ′ is ∆Dyn with every predicate in Dyn?

replaced by its counterpart in Dyn ′. For instance, ∆Has ′ = ¬(Has↔ Has ′) (variables omitted).
We have only performed simple syntactic renaming and removed some second-order quan-

tification since there are no variable functions (fvar).
By lemma 7.2.1 we have the following equivalence:

↓φ ≡ φ ∧ ∀D,Dyn ′. ψ1(D,Dyn ′)→ ψ2(D,Dyn ′)

7.3. 2nd-order quantifier elimination

In this section we show when we can eliminate ↓ from FO[↓]-formulas.We start from the
observation that quantifying on subdomains is unnecessary when all the models of a formula
are supported. Then, we define the boundedness condition on formulas, which restrict the
amount of changes that can be present in their minimal models. Note that as seen earlier, the
minimal models of any C̀-provable formula contain a bounded amount of changes. Modulo
that boundedness property on a formula φ, all 2nd-order quantifiers can be removed from the
2nd-order formula equivalent to ↓φ. During this quantifier elimination, we also notice that
first-order quantifiers can be simplified modulo the theory of n-BFLs and ρ̀-provability. As a
result, every ρ̀-provable, minimised formula is equivalent to a formula in ∃∗∀∗ and to a formula
in ∀∗∃∗.
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7. Change minimality in FO

7.3.1. Removing domain quantification

In the sequel we will substitute relational symbols with formulas of the same arity. For instance,
here we pass a formula θ(x) with 1 free variable as an argument to ψ1(·, ·):

ψ2(θ,Dyn ′) = ∆Dyn ′ ⊆ ∆Dyn ′ ∧ ∀x. θ(x)

Definition. To keep things syntactically simple, we define a context-dependent formula. In any
context where a symbol named Has ′ is defined, let Supp’(x) Has(x)∨ Has ′(x). �

It is possible to simplify a circumscribed formula

�

φ if we assume all models are supported,
i.e. that the pre and post-states cover the entire domain. This is what the next lemma shows:

Lemma 7.3.1. If φ � Support then:

�

φ ≡ φ∧ ∀Dyn ′. ψ1(Supp’,Dyn ′)→ ψ2(Supp’,Dyn ′)

Proof. First, note the difference with

�

φ as described in the beginning of this section: the second-
order quantification ∀D is gone, and all atoms of the form D(x) for x any variable have been
replaced by Supp’(x). This is well-defined since the replacement occurs within a quantification
on Dyn ′ and there is a symbol Has ′ ∈ Dyn ′.

(⇒) Assume A,µ � ∀D,Dyn ′. ψ1(D,Dyn ′) → ψ2(D,Dyn ′). For any predicate tuple M such
that A,µ,Dyn ′ 7→M � ψ1(Supp’,Dyn ′), we need A,µ,Dyn ′ 7→M � ∆Dyn ⊆ ∆Dyn ′ ∧ Support.

With H the image of Has ′ in Dyn ′ 7→M, it suffices to show A,µ,D 7→ (JHasKA ∪H),Dyn ′ 7→
M � ψ1(D,Dyn ′). Indeed, every conjunct of ψ1 is trivially satisfied by assumption, so we are
done.

(⇐) For the other direction, we assume A,µ � ∀Dyn ′. ψ1(Supp’,Dyn ′)→ ψ2(Supp’,Dyn ′).
Take any subset T of dom(A) and any appropriately-sized tuple M of tuples of subsets of

dom(A) such that A,µ,D 7→ T ,Dyn ′ 7→M � ψ1(D,Dyn ′).
Wlog, assume Has ′ is the first symbol of Dyn ′, and let H be the first component of M. Let

MHT be M with its first component replaced with H∩ T .
We have JHasKA ⊆ T by ψ1. So JHasKA ∪ (H ∩ T) ⊆ T . By hypothesis on φ, we have T ⊆

JHasKA ∪ (H∩ T). So we get T = JHasKA ∪ (H∩ T).
• We first show A,µ, Has ′ 7→MHT � ψ1(Supp’,Dyn ′).

Remember that T = JHasKA ∪ (H ∩ T). By assumption we do have JgKA(T) ⊆ T and
JDynKA ⊆ T as well as T nonempty.

To show ∆MHT ⊆ J∆DynKA, remember that ∆M ⊆ J∆DynKA. Suppose there is some e
which is in JHasKA∆(H∩ T) but not in JHasKA∆H. Since H∩ T ⊆ H, e ∈ T is impossible. So
e ∈ JHasKA. But by hypothesis, JHasKA ⊆ T , which is absurd.

Finally, we need A,µ,Dyn ′ 7→MHT � φ[Supp’](Dyn,Dyn ′,Stat). We will use A,µ,D 7→
T ,Dyn ′ 7→M � φ[D](Dyn,Dyn ′,Stat):

We show that A,µ,D 7→ T ,Dyn ′ 7→ M � φ[D](Dyn,Dyn ′,Stat) iff A,µ,Dyn ′ 7→ MHT �
φ[Supp’](Dyn,Dyn ′,Stat) by induction on φ. Note that, from left to right, we can assume
that µ goes into T (by ψ1), and from right to left, that µ goes into JHasKA ∪ (H∩ T) (again
by ψ1).

The only nontrivial case is φ = Has?(t). Then, by induction on t:
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7.3. 2nd-order quantifier elimination

– t = x then either µ(x) ∈ JHasKA ⊆ T so µ(x) ∈ H iff µ(x) ∈ (H ∩ T); or µ(x) ∈ (H ∩ T)
then we are done.

– t = f(t ′), again by JgKA(T) ⊆ T and induction hypothesis we are done.

• Now that we know A,µ,Dyn ′ 7→MHT � ψ1(Supp’,Dyn ′), we can use the main assumption
to obtain A,µ,Dyn ′ 7→ MHT � ∆Dyn ⊆ ∆Dyn ′ ∧ Support. We will deduce A,µ,D 7→
T ,Dyn ′ 7→M � ∆Dyn ⊆ ∆Dyn ′ ∧ ∀x. D(x) from it:

First, T = JHasKA ∪ (H ∩ T), JHasKA∆JHas?KA ⊆ JHasKA∆(H ∩ T) (obtained from ∆Dyn ⊆
∆Dyn ′ with Dyn ′ 7→MHT ) and Support, yield T = dom(A) through simple set-theoretic
considerations.

Let ∆M JDynKA∆M and ∆MHT JDynKA∆MHT .

By definition of MHT , and since J∆DynKA ⊆ ∆MHT , we may only get J∆DynKA 6⊆ ∆M
if there is some e in J∆HasKA (and thus in JHasKA∆(H ∩ T)), but not in JHasKA∆H. By
simple set-theoretic considerations, we get e ∈ JHasKA and e /∈ T ; the latter is absurd. So
J∆DynKA ⊆ ∆M.

7.3.2. Removing 2nd-order quantification

Figure 7.2.: Precondition of Ak. What must the postcondition be to have Ak �↓CC?

Example. As an example of a minimised formula which is not FO-definable, we reprise the
example from page 59 (formula reproduced below).

↓CC ↓
(
Blue(c)∧

∀x. (x 6= c→ ¬Blue(x))∧
∀y. Blue?(x)→ Link?(x,y)→ Blue?(y)

)
with Blue ∈ Dyn. CC(c) specifies a) that the interpretation of c is Blue and no other element is
blue, and b) an element with a Blue? neighbor must be Blue?.

Note that the query defined by Blue?(y)∧ ↓CC captures exactly the elements accessible from
JcKA.

To sketch a proof of non-definability in FO: all FO-definable queries are Gaifman-local, in the
sense that for all such queries Q, there is some d > 0 such that (for the case of queries of arity 1)
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7. Change minimality in FO

Figure 7.3.: The d-balls around a and b are isomorphic

for all structures A and a,b ∈ dom(A), if the d-balls around a and b are isomorphic (with a the
image of b in the isomorphism), then a ∈ Q(A) iff b ∈ Q(A). For more on Gaifman-locality, see
[Libkin, 2013], chapter 4. We skip over the fact that Gaifman locality is defined for relational
signatures and our signatures are non-relational since functions are trivial to encode with
first-order formulas and relational symbols.

Now for any d, take any n-BFL A with two connected components of size k > d, as in
figure 7.3 (we only see the preconditions in that figure). c is at one end of one of the connected
components. Let a be the other extremity of c’s connected component, and let b be any extremity
of the other. The d-balls around a and b are isomorphic, but A,y 7→ a � Blue?(y)∧ ↓CC and
A,y 7→ b 2 Blue?(y)∧ ↓CC (cf. figure 7.2). So Blue?(y)∧ ↓CC is not FO-definable.

We have allowed the interpretation of Link? to be of degree 2 to make things easier; the same
construction works on n-BFLs by using trees of height 1.

�

Example. We will soon show that bounding the amount of changes makes any minimised
formula FO-definable. However, there are minimised formulas with unbounded changes that
are FO-definable. A very simple example :

Switch ∀x. ¬A(x)∧ A?(x)

Any model A of ↓Switch contains |dom(A)| changes. �

We give a semantic constraint under which 2nd-order quantification can be removed. The
idea is that if, for a formula φ, there is a bound on the amount of changes contained in its
minimal models, then second-order quantification in

�

φ can be replaced by a finite enumeration.

Definition. If β : Dyn→N = A 7→ βA, φ is formula, ψ is a sentence, φ is β-bounded if for every
dynamic predicate A ∈ Dyn, for any A,µ � ψ∧ ↓φ, |J∆AKA| 6 βA. βA is then a bound for A in φ
modulo ψ. �

In other words, among the E-minimal models of a bounded formula φ, there is a bound on
the number of elements that can change.

We say that a formula is bounded modulo ψ if there exists a β such that the formula is
β-bounded modulo ψ. We skip the “modulo” part to mean that ψ is valid.

Definition. If φ is β-bounded modulo ψ, define XβA x1, . . . , xβA , a tuple of tuples of fresh
variables, with |xi| = arity(A) for 1 6 i 6 βA. �

Definition. If φ is β-bounded modulo ψ and A ∈ Dyn, define an an associated bounding formula,
Bound(A):

Bound(A) (∀x. A?(x)↔ A(x))∨ Diff(A?, A,XβA)
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7.3. 2nd-order quantifier elimination

where for all relational symbols S,S ′ of same arity a, for all Xk x1, . . . , xk with k > 0 and such
that |xi| = a for 1 6 i 6 k:

Diff(S ′,S,Xk) ∀x. S ′(x)↔ Split(S,Xk, x)
Split(S,Xk, x) (S(x)∧ x /∈ Xk)∨ (¬S(x)∧ x ∈ Xk)

The quantified x also has size a. x ∈ Xk is shorthand for x = x1 ∨ ...∨ x = xk. Again, note that
each xi is a tuple of variables (of size a) and that Xk is a k-sized tuple of tuples of variables. �

A bounding formula for A declares that there are at most βA tuples such that every tuple
involved in a change (i.e. such that it is true in A and false in A?, or the reverse) is also one of
the βA tuples, and that those are the only such tuples.

More precisely:

• Diff takes predicates S ′ and S as well as tuples Xk = x1, . . . , xk. It states that a tuple a of
elements (in some structure A satisfying the formula) is in JS ′KA∆JSKA iff it is equal to the
interpretation of some xi.

• Bound assumes the existence of some bound βA for its argument A and specifies that
either A? and A are equal, or Diff(A?, A,XβA) holds. The first part (“A? iff A”) is necessary
because while XβA must be interpreted by some actual tuples, βA is an overapproximation
of the size of the difference between A and A?; so it’s necessary to explicitly allow for no
difference at all.

Lemma 7.3.2. If φ is β-bounded modulo ψ, then for any A ∈ Dyn, if A,µ � ψ∧ ↓φ then there is
MA such that A,XβA 7→MA � Bound(A).

Proof. By minimality of A and boundedness of φ modulo ψ, there are k 6 βA tuples in J∆AKA.
If k = 0 then A � ∀x. A(x)↔ A?(x). Otherwise let {p1, ...,pk} = J∆AKA. Define MA u1, ...,uβA
where ui pimod k. We must show:

A � ∀x. A?(x)↔ ((A(x)∧ (
∧
i

x 6= ui))∨ (¬A(x)∧ (
∨
i

x = ui)))

(This is just an inlining of the definition of Bound). If e ∈ JA?KA, then either e ∈ J∆AKA, so
e /∈ JAKA and there is 1 6 j 6 k such that e = pj = uj, and so A, x 7→ e � ¬A(x)∧ (

∨
i x = ui),

or x /∈ J∆AKA, so e ∈ JAKA and for all 1 6 i 6 k, e 6= pi, so for all 1 6 j 6 βA, e 6= ui. So
A, x 7→ e � A(x)∧ (

∧
i x 6= ui).

The case for e /∈ JA?KA is similar.

Lemma 7.3.3. If φ is β-bounded and supported modulo ψ, then ↓ φ is first-order definable
modulo ψ.

Proof. In the following we assume variable freshness wherever necessary.
For any A,µ � ψ∧ ↓φ, any A ∈ Dyn, by lemma 7.3.2, we get A,XβA 7→ MA � Bound(A) for

some MA = m1, . . . ,mβA . Consider any set U of arity(A)-sized tuples from dom(A) such that
JAKA∆U ⊆ J∆AKA. For some 0 6 q 6 βA there are xk1 , . . . , xkq ∈ X

β
A such that

A,S ′ 7→ U, xk1 7→mk1 , . . . , xkq 7→mkq � Diff(S ′, A, (xk1 , . . . , xkq))

Note how the case q = 0 makes Diff(S ′, A, ()) degenerate to ∀x. S ′(x)↔ A(x).
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7. Change minimality in FO

Moving from the meta language to the logic, we restate the above as:

A,S ′ 7→ U � ∃XβA . Bound(A)∧
∨

X⊆XβA

Diff(S ′, A,X)

Since ψ1(Supp’,Dyn ′) � ∆A ′ ⊆ ∆A, for any A ′ ∈ Dyn ′, modulo Bound and ψ we have:

∃XA. Bound(A)∧ ∀A ′. ψ1(Supp’,Dyn ′)→ ψ2(Supp’,Dyn ′)

≡ ∃XA. Bound(A)∧ ∀A ′. ψ1(Supp’,Dyn ′)→
(
ψ2(Supp’,Dyn ′)∧

∨
X⊆XβA

Diff(A ′, A,X)
)

≡ ∃XA. Bound(A)∧ ∀A ′.
∧

X⊆XβA

(
Diff(A ′, A,X)∧ψ1(Supp’,Dyn ′)

)
→ ψ2(Supp’,Dyn ′)

≡ ∃XA. Bound(A)∧

∀A ′.
∧

X⊆XβA

(
ψ1(Supp’,Dyn ′)→ ψ2(Supp’,Dyn ′)

)
{A ′(x) 7→ Split(A,X, x)}

Note that the substitution {A ′(x) 7→ Split(A,X, x)} captures the arguments of A ′ and uses
them as arguments for Split; the substitution is simply applying the equivalence Diff(A ′, A,X) =
∀x. A ′(x)↔ Split(A,X, x) at the syntax level.

Since all occurrences of A ′ have been removed, the ∀A ′. can be dropped. Starting from the
formula provided by lemma 7.3.1, repeated application of the above for all A ∈ Dyn removes all
2nd-order quantification from ↓φ: As syntactic sugar, define

ψ ψ1(Supp’,Dyn ′)→ ψ2(Supp’,Dyn ′)

With a bounded support formula φ, and Dyn = (A1, . . . , Ap), for any 1 6 i 6 p, any tuple Y
of arity(Ai)-sized tuples of variables, define the substitution

σi(Y) A ′i(x) 7→ Split(Ai,Y , x)

Modulo ψ, we have:

↓φ ≡ ↓φ∧
∧

Ai∈Dyn

∃XβAi . Bound(Ai)

≡ ∃XβA1 , ...,XβAm . ↓φ∧ Bounds (where Bounds
∧

Ai∈Dyn Bound(Ai))

≡ ∃XβA1 , ...,XβAm . xφ∧
(
∀A ′0, ..., A ′m. ψ

)
∧ Bounds

≡ ∃XβA1 , ...,XβAm . φ∧

∀A ′0, ..., A ′n−1.
∧

YAm⊆X
β
Am

ψ{σm(YAm)}

∧ Bounds

...

≡ ∃XβA1 , ...,XβAm . φ∧

 ∧
YA1
⊆XβA1

· · ·
∧

YAm⊆X
β
Am

ψ{σm(YAm)} . . . {σ1(YA1)}

∧ Bounds
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7.3. 2nd-order quantifier elimination

7.3.3. Simplifying FO quantifiers

We can show the level of quantifier nesting is not increased much by minimisation.

Lemma 7.3.4. If φ is supported, φ is bounded modulo ψ, η is a first-order quantifier alternation
prefix, and φ ∈ η and ¬φ ∈ η, then ↓ φ is equivalent modulo ψ to an FO formula with a
quantifier prefix in ∃∗η∀∗.

Proof. By inspection of the first-order formula equivalent to

�

φ (modulo ψ) given by lemma 7.3.3,
and by trivial syntactic manipulation:

∧
YAi⊆XAi

(
ψ1(Supp’,Dyn ′)→ ψ2(Supp’,Dyn ′)

)
{A ′i(x) 7→

Split(Ai,YAi , x)} is a conjunction of formulas with quantifier prefix in η (by assumption on φ),
and Bound(Ai) contains only universal quantifiers in prenex form.

Definition. Let d > 0. In an n-BFL, the formula SameTree(x,y) specifies that x and y are in the
same tree. The formula δ6d(x,y) specifies that x and y are at distance 6 d. We skip the proofs
for each.

SameTree(x,y) parentn(x) = parentn(y)

δ6d(x0,yd) ∃ {yd ′−1, xd ′ | 0 < d ′ 6 d}.

 ∧
06i6d

SameTree(xi,yi)


∧

 ∧
06i<d

yi = xi+1 ∨ Link(yi, xi+1)∨ Link?(yi, xi+1)


�

The goal of the following lemma is to remove an existential quantifier in front of a formula.
Recall that `Θn(d) bounds the size of any d-sized ball in any A : Θn (cf. lemma 4.3.6 p.67).

Lemma 7.3.5. If d > 0, and ψ is a formula then ∃x. δ6d(x,y)∧ψ is equivalent modulo Tn to:

∨
16k6`Θn(d)

((
∃x1, ..., xk.

∧
16i6k

δ6d(xi,y)∧
∧

16j6=i6k
xi 6= xj

)

∧ ∀x1, ..., xk.
( ∧
16i6k

δ6d(xi,y)∧
∧

16j6=i6k
xi 6= xj

)
→

∨
16i6k

ψ{x 7→ xi}

)

Proof. By lemma 4.3.6, there are at most `Θn(d) nodes at distance at most d from y.
Suppose A,µ � ψ and δA(µ(x),µ(y)) 6 d. Let 1 6 k 6 `Θn(d) be the number of elements at

distance at most d from µ(y). The kth disjunct of the above sentence is satisfied by taking those
k elements as existential witnesses of for x1, . . . , xk (left conjunct): they are at distance 6 d
from y, all different. The only universal witnesses for x1, . . . , xk (right conjunct) that satisfy the
premise are those k elements, and one of them is µ(x).

The other way around, let θk be the satisfied disjunct; by the existential part of θk, its universal
part is not vacuously true.
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Each disjunct in the formula above supposes a different number of distinct elements in
BA(µ(y),d). For each possible answer, the universal part affirms that at least of those elements
can play the role of x in ψ. We could reduce the number of disjunctions by counting the number
of trees around an element instead of the number of elements; then the x1, . . . , xk would be tree
roots and the final disjunct (ψ{x 7→ xi}) would be over all descendants of the correct root.

Theorem 7.3.6. If φ is (V,d)-preserved then φ∧ SupportD is bounded modulo Tn.

Proof. Let A : Θn such that A,µ |= ↓ (φ∧ SupportD). Let A ∈ Dyn, e ∈ J∆AKA and a ∈ e. By
lemma 4.3.5, if a /∈ BA(µ(V),d+ 1) then there is a (µ(V),d)-sub B of A such that B 6= A and
B � SupportD. So B <α A, by definition of subs. By lemma 4.3.3, B : Θn. And since φ is
(V,d)-preserved, B,µ � φ. Absurd by minimality of A. So J∆AKA ⊆ BA(µ(V),d+ 1)arity(A).

By lemma 4.3.6, |BA(µ(V),d+ 1)| 6 |V| `Θn(d+ 1).

Lemma 7.3.7. If φ ′ is (V,d)-preserved, in ∃∗∀∗ and in ∀∗∃∗ then ↓(φ ′∧ SupportD) is in ∃∗∀∗ and
in ∀∗∃∗ modulo Tn.

Proof. Let φ φ ′ ∧ SupportD. For ↓φ ∈ ∃∗∀∗ modulo Tn, we get β-boundedness modulo Tn
(for some β : Dyn → N) with lemma 7.3.6, φ is supported by definition, and so we get the
syntactic fragment with lemma 7.3.4.

Inspecting the formula equivalent to

�

φ modulo Tn as shown in 7.3.3, we have:

↓φ ≡ ∃XA1
, ...,XAm

. F

where

F φ∧

 ∧
YA1
⊆XA1

· · ·
∧

YAm⊆XAm

ψ{σm(YAm)} . . . {σ1(YA1)}

∧ Bounds

It is easy to syntactically check that F ∈ ∀∗∃∗ (remember that φ ′ ∈ ∃∗∀∗, φ ′ ∈ ∀∗∃∗, and that
SupportD is a universal sentence). Now, we show that each witness in ∃XAi can be always be
found at distance 6 d+ 1 from µ(V) for any A : Θn such that A,µ �↓φ.

As a reminder, Bound(Ai) (∀x. A?
i (x) ↔ Ai(x))∨ Diff(A?, Ai,XAi) and is satisfied for every

Ai ∈ Dyn. Let A, (XAi 7→ MAi)16i6m,µ � F. If Bound(Ai) is satisfied by its 1st disjunct, then
J∆AiKA = ∅ and the choice of witness is irrelevant.

Otherwise, by Diff, the interpretations for XAi are exactly the members of J∆AiKA. By lemma
4.3.5, for every e ∈ J∆AKA and every a ∈ e, there is some c ∈ µ(V) such that δA(a, c) 6 d+ 1.

By the above, we have modulo Tn:

↓φ ≡ ∃XA1
, ...,XAm

.
( ∧
16i6m

∧
x∈XAi

∧
x∈x

∨
y∈V

δ6d+1(x,y)
)
∧ F

Repeated application of lemma 7.3.5 yields that modulo Tn, ↓φ is equivalent to a disjunction
of formulas with the following shape:(

∃XA1
, ...,XAm

. G1
)
∧ ∀XA1

, ...,XAm
. G1 → F ′

where G1 is existential and F ′ ∈ ∀∗∃∗. G1 is a conjunction of existential formulas of the form
δ6d+1(x,y) or x 6= y. F ′ is a disjunction of formulas in ∀∗∃∗ (see the details of the construction
in lemma 7.3.5), so ↓φ ∈ ∀∗∃∗ modulo Tn.

We can move to the main result of this section:
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7.3.4. Main theorem for elimination of ↓

Theorem 7.3.8. If V ;d C̀ φ, then φ∧Tn is in both ∃∗∀∗ and ∀∗∃∗.

Proof. Remember that Tn is a universal sentence, so it suffices to prove that φ is in both ∃∗∀∗
and ∀∗∃∗ modulo Tn. We proceed by induction on the derivation, proving for all V,d.

DYNAMICC, STATICC, INVARIANTC, WEAKC, BOOLC,GUARDC Trivial.

∃-GUARDC φ = ∃x. α(x,y) ∧ φ ′ ∈ ∃∗∀∗ by induction hypothesis on φ ′. Moreover, x 6= y,
so by functionality of Link, Link? (given by Tn) and equality, we have φ ≡ (∃x. α(x,y)) ∧
(∀x. α(x,y)→ φ); since φ ′ ∈ ∀∗∃∗ by induction hypothesis, φ ∈ ∀∗∃∗ as well.

∀C ∀x. φ ∈ ∀∗∃∗ using the induction. For ∃∗∀∗: no subformula of φ is ψ such that x ∈ 〈ψ〉 and
of the form ψ =↓ψ ′ since CircumC adds all variables to V and adds 1 to d, and InvariantC

(which removes variables from V) requires a formula with d = 0. So φ ∈ FO. We now proceed
by induction over the number of ∃ quantifiers under ∀x. .

We put φ in conjunctive normal form, treating quantified ∃ subformulas as atoms, and
distributing ∀x. over ∧, pushing it inside other toplevel ∀, and pushing universal quantifiers
up. Note that by distributing ∀x. over ∧, the number of ∃ under ∀x. does not increase.

Every conjunct of the resulting formula is of the form

∀x.
∨
θi

where each θi is a literal or a formula of the form

∃y. α(y, z)∧ θ ′i

where V ′,d ′ C̀ θ
′
i for some V ′,d ′, since the existential subformulas have been treated as atoms,

pre formulas are all provable (for InvariantC) and guards are all provable (for GuardC).
Moreover x 6= z: by assumption x /∈ V (otherwise ∀C could not have been applied), and ∃-
GuardC adds z to the context. The only rule that could have removed z is InvariantC, but that
requires d = 0, and ∃-GuardC increases d by 1 (rules are monotone w.r.t. d). Now, by induction
on the number of θ ′i where x occurs. If there is none, every ∃ and ∀x. can all be swapped and
we are done.

Otherwise the clause is of the form

∀x. (∃y. α(y, z)∧ θ ′i)∨ θ

where x occurs in θ ′i. By the same argument as in the previous case (∃-GuardC), this is
equivalent modulo Tn to:

(∀x. θ∨ ∃y. α(y, z))∧ (∀x. θ∨ ∀y. α(y, z)→ θ2)

≡(∀x. θ∨ ∃y. α(y, z))∧ ∀y. (∀x. θ∨¬α(y, z)∨ θ2) (up to variable renaming)

In the left conjunct, there is one less θ ′i where x occurs, so done by the innermost induction
hypothesis. In the right conjunct, there is one less ∃ under ∀x. and θ∨α(y, z)∨ θ2 is C̀-provable,
so done by the outermost induction hypothesis.
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CIRCUMC Lemma 4.3.3 implies that Symlink is (∅, 0)-preserved, so by the premise of CircumC

and theorem 4.4.5, φ∧ Symlink is (V,d)-preserved. Moreover, Symlink is a universal sentence
so φ∧ Symlink is in ∃∗∀∗ and ∀∗∃∗. So by lemma 7.3.7 (applicable thanks to the induction
hypothesis), and WeakC, we are done.
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8.1. Related work

Circumscription The use of circumscription for nonmonotonic reasoning dates back to Mc-
Carthy [McCarthy, 1980], and attempts at inferring non-changes logically can be found by
following mentions of the frame problem [Reiter, 1991]. We use an instanciation of unified
circumscription, a new flavor of circumscription which generalises [Doherty et al., 1998]. Pre-
vious works on taming circumscription require global syntactic properties of the formulas
[Doherty et al., 1997, Nonnengart et al., 1999, Conradie, 2006] and only consider satisfiability
or FO-definability of circumscribed formulas; we introduce a modular method for building
circumscribed formulas that live in a tight fragment of FO. The resulting classes of formulas
are incomparable with those presented here. Moreover, the goal of circumscription is usually
to approximate commonsense reasoning. In contrast, we want to use nonmonotonicity for the
purpose of graph rewriting rule synthesis.

There is a wide variety of forms of circumscription, and some make the connection to
contemporary logic programming by representing semantics such as stable model and FLP
[Ferraris et al., 2007, Ferraris et al., 2011, Wan et al., 2014, Zhang and Ying, 2010, Yang et al., 2011,
Bartholomew et al., 2011]; we hope other connections can be made between the form of circum-
scription we developed here and these fields.

Biological modelling Logical approaches to biological and chemical modelling exist in many
flavors, using linear logic or other resource-aware logics [Despeyroux, 2016, Boniolo et al., 2010],
or logic rules for specification and modality for queries [Eker et al., 2002], or explicitly rep-
resenting reactions as first-class citizens and using circumscription for describing weakest
preconditions to reactions [Doherty et al., 2004]. The focus, so far, has been on verification of
models or pure knowledge representation. Here, we offer a classically model-based approach
and maintain intuitive semantics. We follow the tradition of taking graph rewriting as a domain-
specific language for biology [Boutillier et al., 2018, Chylek et al., 2014, Faeder et al., 2009] and
we try to retain enough expressivity for large-scale, natural knowledge representation while
ensuring reasonable tractability. More generally, logical approaches such a boolean networks
are widely used to model gene interactions [Novère, 2015].

Another approach is [Basso-Blandin et al., 2015], which extends Kappa using slice categories
over a particular kind of graph (reminiscent of bigraphs) and their homorphisms. The slice is
over a master graph which represents all possible entities and their interactions. “Nuggets” of
knowledge are given as graphs together with a homomorphism towards the master. Nuggets
of knowledge are updated using categorical operations, and in some cases a set of knowledge
nuggets can be compiled to Kappa. This approach seems promising for the connection between
ontologies in biology [Stevens et al., 2000, Bard, 2004] and rule-based execution.

Transition structures We compare with two well-known approaches. Hoare logic is often about
verifying properties of programs, by obtaining a proof of {P}p{Q} for statements P,Q and a
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program p. Corresponding assertions in our setting would be of the form P◦ → Q?, with a
question mark as a placeholder for p: we are concerned with synthesising p from a specification.
The p we wish to synthesize, however, is not any program satisfying P◦ → Q?; we want it to
be among the “best” programs, in the sense that it also edits the memory as little as possible.
Other differences are that our programs run in constant time, and that we want to mix pre-
and post-conditions more freely. There have been approaches to Hoare logic-based program
synthesis ([Mamouras, 2016]); in the future work section we describe an idea for “rule merging”
which would yield something similar to a Hoare sequence rule {P}p{Q}, {Q}p ′{R}⇒ {P}p;p ′{R}.

A logic on pre- and post-conditions such as the one introduced here naturally makes one
think of an extension to more frames, either by adding new copies of Dyn, such as Dyn??..., or
in the style of [Reiter, 2001] by adding natural numbers and an additional dimension to every
dynamic statement: one can then write for instance A(7, x) instead of A(x) to mean that A(x) is
true at frame 7, or even ∀i : int. A(i, x)→ A(i+ 1, x). A modal version of this approach would
be dynamic logic, but 1) we see this approach as a logic on traces rather on rules, about which
see [Laurent et al., 2018] for a trace query language on Kappa traces, and 2) the crucial notion
of minimality, especially on an unbounded number of frames, could resurrect variants of the
frame problem [Reiter, 1991].

Guarded fragment Many constructions in this thesis are based on guards. After the intro-
duction of C̀, they become quite constrained (they are morally of bounded degree) anyway,
but before that, one could try to extend the correctness results on ρ̀ to looser guards, such
as the loosely guarded fragment [Hodkinson, 2002], or even the guarded negation fragment
[Bárány et al., 2011].

8.2. Conclusion

This thesis is an attempt to lay the foundations for a more capable molecular biology modelling
framework. It takes rule-based modelling as a starting point and extends it through logic.
Models are transitions between states. Transition signatures are separated into precondition
(Link, Has, A, . . .), postcondition (Link?, Has?, A?, . . .) and static information (N, f, parent). For
instance, Enzyme(x)∧¬Active(x)∧ Active?(x) means that x is an enzyme and becomes active.
Any context is allowed. Anything else can happen. State signature drop the postcondition part.

A reasonable specialisation is the class of n-BFLs, where the static part describes height-
bounded trees and where Link, Link? are functional. The static part represents the inner protein
structure, while the dynamic part represents transient protein state and protein-protein interac-
tions.

Even modulo the theory of n-BFLs, first-order satisfiability is not decidable. But decidability
in the ∃∗∀∗ fragment is decidable.

There is a change order E between transitions. If A E B, A and B start from the same state
but A “does less” than B. This order is relevant to biological modelling because execution of
protein-protein interactions requires a closed-world policy regarding which changes can occur.
An operator ↓ is added to first-order logic. For any formula φ, ↓φ is the set of E-minimal models
of φ. ↓ represents the end of the data gathering phase and the beginning of the execution phase.

Circumscription is a class of 2nd-order macros created by [McCarthy, 1980], used to capture
minimal models of formulas along various orders. Unified circumscription generalises various
common forms of circumscription, and can be instantiated to define ↓. So it is possible to define
↓ syntactically using 2nd-order logic.
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Transitions can be summarised by transition patterns, of the form (A,K) with K ⊆ dom(A).
While an n-BFL A can be “found” in another n-BFL B if there is an embedding from A to B, a
pattern adds the constraint that the embedding must add no new Link (or Link?) to elements
of K. Without patterns, negative constraints such as ∀y. ¬Link(c,y) could not be encoded.
Embeddings that agree with that constraint are matches.

There are two ways to generate (finite or infinite) sequences of sates. One is operational, based
on sets of rules (a rule is just a pattern with more information): given a partial match from a
rule to a state, a next state is constructed. The other is denotational, based on sets of transitions:
any sequence from the set is correct if the post- and preconditions of every successive transition
are equal. All sequences are defined relative to some starting state.

The main contribution of this thesis is to provide conditions where those two notions coincide
and where the operational part can be finitely described:

For every set of transitions, there is an associated set of canonical patterns (and corresponding
rules). If a formula φ is provable in the deductive system ρ̀ then, for some starting states, the
denotational runs of JφK are exactly the executions induced by the canonical rules associated to
JφK.

A rule-based rewriting engine starts from a file, which is a finite object. In general, the
canonical rules associated to JφK may be an infinite set. If a formula φ is provable in another
deductive system, C̀, then that set of rules is finite. The execution of those rules may not match
the denotational runs; for that, one needs ρ̀.

This is the desired correspondence between a denotational notion of runs and an operation
notion of execution, given by a finite object. That finite object is essentially a subset of the
models of a formula φ within a bounded size, so it can effectively be constructed.

An additional property of C̀ is that, modulo the theory of n-BFLs, the formulas it proves are
all in the ∃∗∀∗ fragment and also in the ∀∗∃∗ fragment. But they are not negation-closed. Given
the earlier decidability result, this opens the door to querying. The elimination of ↓ happens
thanks to its 2nd-order, syntactic definition.

A special-purpose syntax for programs is here to make biological modelling easier. Every
program P corresponds to a formula φP, and φP is always provable both in C̀ and ρ̀, up to
equivalence.

8.3. Future work

Application to a biological use case In the short term, we plan on applying the program syntax
to a relevant biological use case. However, we believe that most of the practical usefulness of
the logic developed here will after the development of a higher-level language that is more
comfortable to use and compiles to the iota logic.

Complexity of the fragments There are lower bounds to establish on satisfiability in ∃∗∀∗
modulo Tn as well as on ρ̀ and C̀-provable formulas.

Stochastic rates To accurately represent biological observations, attaching reaction rates to
each rule is mandatory. Given a state and a set of rules, every “match” (in the sense of some
graph morphism) from a rule to the state is counted. The probability of rewriting with one
match is weighted by the rate attached to the rule which is source of the match.
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Rewriting in our setting is nondeterministic. We intend to introduce rates at the level of
programs: a program would be of the form

θ1 at rate1 ; . . . ; θk at ratek (. . .)

where each ratei is e.g. a floating-point number. The main difficulty is finding a representa-
tion of the canonical patterns such that the number of transitions at the denotational level is
equal to the number of match at the pattern level.

Better C̀ Currently, a formula such as

Symlink = ∀xy. (Link(x,y)→ Link(y, x))∧ (Link?(x,y)→ Link?(y, x))

is not provable. In general, if there is a guard α(x,y)→ . . ., the “. . .” may only contain dynamic
information about x or y, but not both. We think the requirement can be loosened: binary
dynamic atoms that mention both x and y can be allowed (but dynamic atoms that only mention
x cannot be allowed together with dynamic atoms that only mention y). This should not require
changing the definition of preservation; we think it should be possible to define a class of nice
clauses (as we did with good and great clauses in chapter 3), and add a rule of the form

C nice
∅, 0 C̀ C◦ ∧C?

The rule would replace both InvariantC and GuardC. InvariantC would be admissible,
using a technique similar to the proof of lemma 5.2.2, and exactly the same formulas would be
provable, albeit as tightly (context-wise) as with GuardC. It seems that the following definition
of a nice clause C should work: there is some x mentioned in every dynamic literal, and every
y 6= x mentioned in a dynamic literal is mentioned in a negative dynamic literal.

Rule merging Consider F0 and F1 two formulas on Θ. Let Shift(F1) be F1 where every starred
symbol in F1 is replaced with a doubly starred symbol, and every unstarred symbol is replaced
with a starred symbol. For instance, A? becomes A?? and A becomes A?. We would be using a
signature Θ ′ = (Stat,Dyn,Dyn?,Dyn??) with static symbols, normal dynamic symbols, starred
symbols and doubly starred symbols. The formula F0 ∧ Shift(F1) would be a Θ ′-formula.

We could of course extend this to k-state transitions, which opens questions about minimi-
sation (but introduces issues related to the frame problem [Reiter, 1991] that we have mostly
avoided in this thesis). But the 3-place case is particular since we don’t need more to ask this
question:

Is there a Θ-formula F such that JFK is the projection of Stat,Dyn,Dyn?? from the models of
JF0 ∧ Shift(F1)K?

If yes, we could iteratively apply this process and have formulas that characterize the n-step
accessible states from any starting state. More prosaically, it means we could construct new
rules by combining existing rules in a new dimension (by gluing them end-to-end with the
shift-conjunction method given above for F0 and F1).

Suppose that, for every interpretation of Stat,Dyn,Dyn??, JF0 ∧ Shift(F1)K only allows a
single middle state (i.e. the semantics of Dyn? are uniquely defined by the semantics of
Stat,Dyn,Dyn??). In that case Beth’s definability theorem answers in the positive: there is a
Θ-formula as we wish. We wonder if there are extensions of Beth’s theorem that could hold
when the middle state is not uniquely defined but may only be one among a finite number of
states, with that bound a function of F0 and F1. Under ↓ this constraint is realistic.
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Unguarded ∃ in C̀ As mentioned page 69, it should be possible to allow unguarded existential
quantification in C̀ by changing the definition of preservation. Instead of drawing boundaries
around the image of an interpretation, the definition would require the existence of a bounded-
size protected set. We avoided this approach because it does not immediately yield where
these protected elements are, and the proofs from chapter 4 on eliminating ↓ from C̀-provable
formulas relies on knowing the location of these protected elements.

Removing Support Even though support is used heavily throughout, we think it may be
possible to not rely on it so much and simplify proofs in the process. First, state could be on the
signature Θ◦ \ {Has}, and the state joining operation 〈·, ·〉 could add populate the interpretations
of Has and Has? depending on whether an element is in the domain of the left state and/or the
right state. This way, all transitions would be immediately decomposable, and would also be
immediately strongly supported as well as dynamically supported.

The harder part is that support seems to be necessary in the proof of ↓-elimination when the
domain quantification is removed, but modulo boundedness, it may be possible to eliminate
domain quantification by quantifying on a finite number of “possibly removed” elements
(recall that in circumscription domain quantification only needs to consider subdomains of the
“current” one, so if there are a finite number of candidates for removal, there are a finite number
of subdomains to consider).

Effective rule synthesis We have so far avoided the topic of complexity for rule synthesis. For
a formula φ, can we write down the rules induced by P(φ, ‖φ‖) in reasonable time? Those
patterns are of size O(|Statfun|

2‖φ‖n2) (see lemma 4.3.6 page 67), i.e. exponential in the quantifier
depth of φ and in n2. For a given s > 0, the number patterns of size s (up to iso) is bounded by
2su × (s+ 1)2s, where u is the number of unary predicates in Θ. The first term is for the names
and dynamic properties of elements. The second term is for each functional link relations (Link
and Link?). So we are a priori in double exponential time.

First, an observation: formulas induced by programs are of the form
∨
↓ψi, and each pattern

set can be synthesised in parallel. It seems reasonable to hope for a large number of small ψis.
Second, we have good hope of finding conditions where there exists a pattern set P such that

Insts(P) = Insts(P(φ, ‖φ‖)) (same instances implies same runs), and such that each p ∈ P is of
size polynomial in the number of quantifiers of φ: quantifier depth bounds the maximum distance
between “important” pattern elements, but the number of quantifiers bounds the number of
“important” pattern trees. Trees have size exponential in n, however.

The size of P itself, however, would be exponential in the number of quantifiers of φ and in n.

Full-blown specification language First, an extension of programs P: we would like to extend
the syntax with

react + J1 → J ′1, . . . ,+Jm → J ′m

where each Ji has the same form as the Ij’s in the definition of P, J ′i is quantifier-free,
〈J ′i〉 ⊆ 〈Ji〉 and +Ji → J ′i is compiled to

∀ ¬Ji → J?i → J ′i

There may be additional constraint on the polarity of literals and whether J ′i is purely post. In
plain english, this would add universal invariants of the form “if Ji becomes true, ensure J ′i”.
The idea is that with formula of the form +A → B, the variables mentioned in B are already
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known to be active. So if their tree is cleared, +A becomes false, validating the implication. We
are confident that this type of formula is provable in ρ̀. C̀ may need to be extended.

Second, a longer-term goal is to develop a full-fledged programming language for molecular
biologists. Any valid program would compile to a formula provable both in ρ̀ and C̀.
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To make reading easier, we reproduce the definition of Tn given page 61:

Tn Symlink ∧ Funlink ∧T ′n

where

T ′n ∀x.PSpec(x)∧Hn(x)

PSpec(x)
( ∧
f∈Statfun

f(x) 6= x→ parent(f(x)) = x
)

∧
(

parent(x) 6= x→
∨

f∈Statfun

f(parent(x)) = x
)

Hi(x)
∧

f∈Statfun

f(x) 6= x→ Hi−1(f(x)) (for 0 6 i < n)

H−1(x) ⊥
FunLink’ ∀x,y, z. Link(x,y)→ Link(x, z)→ y = z FunLink FunLink ∧ FunLink?

Symlink ′ ∀x,y. Link(x,y)→ Link(y, x) Symlink Symlink ∧ Symlink?

Lemma 4.1.1. If A : Θ, A : Θn iff A � Tn.

Proof. Trivially, A |= Symlink ∧ FunLink iff JLinkKA and JLink?KA are symmetric and functional.
Let p JparentKA. Now:

A : Θn implies A � Tn For any a ∈ dom(A), we first verify the left conjunct of PSpec(a): if
f(a) = b for some b 6= a and f ∈ JStatfun \ {parent}KA, by definition of an n-BFL we have
p(f(a)) = a.

For the right conjunct, the definition of an n-BFL also gives f(p(a)) = a for some f ∈
JStatfun \ {parent}KA.

Now we show that for all 0 6 k 6 n, if the longest path away from the root starting from a in
GA is of length at most k, then a satisfies Hn. By induction on n, the base case is trivial: we
have k = 0 and a satisfies H0(x) =

∧
f∈f f(x) = x. Otherwise take any child f(a) of a (for some

f ∈ f), the longest path from f(a) is of length at most k− 1, so by induction we have f(a) satisfies
Hn−1. Since this is for any f, a satisfies Hn.

A � Tn implies A : Θn Since any element satisfies Hn, there is no forward path of length
> n. The last thing to check is that we have a tree, not a DAG. Take a,b ∈ dom(A), f,g ∈
JStatfun \ {parent}KA such that a 6= f(a) = g(b) 6= b. Since PSpec(a) and PSpec(b) hold in A, the
first conjuncts gives us respectively p(f(a)) = a and p(g(b)) = b. We assumed f(a) = g(b), so
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a = b. This also shows that the graph of p contains the parent relation of the loop-free union of
the graphs of JStatfun \ {parent}KA. To see that the graph of p is contained in it, consider the
second conjunct of PSpec: whenever p is not the identity on some a, there must be some f such
that f(p(a)) = a.

Lemma A.0.1. · ρ̀ Has0 ∧ Has?0

Proof. Immediate by lemma 5.2.2.

A.1. Building context-free and retractable formulas

Proof of lemma 3.3.1:

Lemma 3.3.1. If φ is (I,d)-context-free then φ is (I ′,d ′)-context-free for any d ′ > d, I ′ � I.

Proof. Take any d ′ > d, A,B,µ : 〈φ〉 → dom(A) and m : (A,B∆,µ
A (d ′)) → B, A,µ � φ and

B � ∀(I ′ ∨m). Since B
∆,µ
A (d ′) ⊆ B

∆,µ
A (d), by lemma 2.4.4, m : (A,B∆,µ

A (d)) → B; moreover
B � ∀(I ′ ∨m) trivially implies B � ∀(I∨m) so by assumption on φ we get B,m ◦ µ � φ.

Proof of lemma 3.3.2:

Lemma 3.3.2. If φ is (I,d)-retractable then φ is (I ′,d ′)-retractable for any d ′ > d, I ′ � I.

Proof. Take any d ′ > d, A,B,µ : 〈φ〉 → dom(A) and m : (A,B∆,µ
A (d ′)) → B, B,m ◦ µ � φ and

B � ∀(I∨m). Since B
∆,µ
A (d ′) ⊆ B

∆,µ
A (d), by lemma 2.4.4, m : (A,B∆,µ

A (d)) → B; moreover
B � ∀(I ′ ∨m) trivially implies B � ∀(I∨m) so by assumption on φ we get A,µ � φ.

Proof of lemma 3.3.3

Lemma 3.3.3. A quantifier-free formula φ is (>, 0)-context-free.

Proof. Let A,µ � φ, m : (A,B∆,µ
A (0)) → B. Since φ is quantifier-free and m is an embedding,

B,m ◦ µ � φ.

Proof of lemma 3.3.4

Lemma 3.3.4. A quantifier-free formula φ is (>, 0)-retractable.

Proof. Take d = 0 as retraction radius. For A,B,µ : 〈φ〉 → dom(A), m : (A,B∆,µ
A (d)) → B with

B,m ◦ µ � φ, m is an embedding so A,µ � φ.

Proof of lemma 3.3.5:

Lemma 3.3.5. If φ1 is (I,d1)-context-free (resp. retractable) and φ2 is (I,d2)-context-free (resp.
retractable) then φ1 ∧φ2 is (I, max(d1,d2))-context-free (resp. retractable).

Proof. Take A,B,µ : 〈φ1 ∧ φ2〉 → dom(A),m : (A,B∆,µ
A (max(d1,d2)) → B such that A,µ �

φ1 ∧ φ2 (resp. B,m ◦ µ � φ1 ∧ φ2) and B � ∀(I∨m). We want B,m ◦ µ � φ1 ∧ φ2 (resp.
A,µ � φ1 ∧φ2).

By lemma 2.4.4, m : (A,BA (µ (〈φ1〉)∪ J∆KA,d1) → B. So by definition of context-free (resp.
retractable), B,m ◦ µ � φ1 (resp. A,µ � φ1). Similarly, B,m ◦ µ � φ2 (resp. A,µ � φ2).

Proof of lemma 3.3.6:
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Lemma 3.3.6. If φ1 is (I,d1)-context-free (resp. retractable) and φ2 is (I,d2)-context-free (resp.
retractable) then φ1 ∨φ2 is (I, max(d1,d2))-context-free (resp. retractable).

Proof. Take A,B,µ : 〈φ1 ∨ φ2〉 → dom(A),m : (A,B∆,µ
A (max(d1,d2)) → B such that A,µ �

φ1 ∨ φ2 (resp. B,m ◦ µ � φ1 ∨ φ2) and B � ∀(I∨m). We want B,m ◦ µ � φ1 ∨ φ2 (resp.
A,µ � φ1 ∨φ2).

For i ∈ {1, 2}, suppose A,µ � φi (resp. B,m ◦ µ � φi). By lemma 2.4.4, m : (A,BA(µ(〈φi〉) ∪
J∆KA,di) → B. So by definition of context-free (resp. retractable), B,m ◦ µ � φi (resp. A,µ �
φi).

Proof of lemma 3.3.7:

Lemma 3.3.7. If φ is (I,d)-context-free and α(x,y) is a guard, then ∀x. α(x,y)→ φ is (I,d+ 1)-
context-free.

Proof. Let A,B,µ : 〈φ〉 \ {x}→ dom(A) and m : (A,B∆,µ
A (d+ 1))→ B with A,µ � ∀x. α(x,y)→ φ

and B � ∀(I∨m). We want B,m ◦ µ � ∀x. α(x,y)→ φ.
Take any a ∈ dom(B) such that B,m ◦ µ, x 7→ a � α(x,y). Let b µ(y). By lemma 3.2.1,

δB(a,m(b)) 6 1. Since b ∈ Im(µ), by definition of a match, a ∈ m(A). Since m is an embedding,
A, x 7→ m−1(a),y 7→ b � α(x,y). Since A,µ � ∀x. α(x,y) → φ, we get A,µ, x 7→ m−1(a) � φ.
Moreover, by lemma 3.2.1, δA(m(a),b) 6 1, so B

∆,ν
A (d) ⊆ B

∆,µ
A (d+ 1) where ν µ, x 7→ m−1(a).

We can now apply lemma 2.4.4 to m and get m : (A,B∆,ν
A (d))→ B. Since φ is (I,d)-context-free,

B,ν � φ. Since we took any a ∈ dom(B), we have B,µ � ∀x. α(x,y)→ φ.

Proof of lemma 3.3.8:

Lemma 3.3.8. If φ is (I,d)-retractable then for any x, ∀x. φ is (I,d)-retractable.

Proof. Let d be a retraction radius for φ, I. Let A, B,µ : 〈φ〉\ {x}→ dom(A) andm : (A,B∆,µ
A (d))→

B such that B,m ◦ µ � ∀x. φ and B � ∀(I∨m). We want A,µ � ∀x. φ.
Take any a ∈ dom(A). Since B � ∀x. φ, B,m ◦ µ, x 7→ m(a) � φ. Since φ is (I,d)-retractable

and m−1(m ◦ µ, x 7→ m(a)) = µ, x 7→ a, we get A,µ, x 7→ a � φ.

Proof of lemma 3.3.9:

Lemma 3.3.9. If φ is (I,d)-context-free then for any x, ∃x. φ is (I,d)-retractable.

Proof. Let A, B,µ : 〈φ〉 \ {x} → dom(A) and m : (A,B∆,µ
A (d)) → B such that A,µ � ∃x. φ and

B � ∀(I∨m). We want B,m ◦ µ � ∃x. φ.
There is a ∈ dom(A) such that A,µ, x 7→ a � φ. Since φ is (I,d)-context-free, B,m ◦ µ, x 7→

m(a) � φ.

Proof of lemma 3.3.10:

Lemma 3.3.10. If φ is (I,d)-retractable and α(x,y) is a guard then ∃x. α(x,y)∧φ is (I,d+ 1)-
retractable.

Proof. Let d be a retraction radius forφ, I, let A,B,µ : 〈φ〉\ {x}→ dom(A) andm : (A,B∆,µ
A (d+ 1))→

B with B,m ◦ µ � ∃x. α(x,y)∧φ and B � ∀(I∨m). We want A,µ � ∃x. α(x,y)∧φ.
There is some a ∈ dom(B) such that B,m ◦ µ, x 7→ a � α(x,y)∧φ. Let b µ(y). By lemma

3.2.1, δB(a,m(b)) 6 1. Since b ∈ Im(µ), by definition of a match a ∈ m(A). Since m is an
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embedding, A, x 7→ m−1(a),y 7→ b � α(x,y), so again by lemma 3.2.1, δA(m−1(a),b) 6 1. So
B
∆,ν
A (d) ⊆ B

∆,µ
A (d+ 1) where ν µ, x 7→ m−1(a). We can now apply lemma 2.4.4 to m and get

m : (A,B∆,ν
A (d))→ B. Since φ is (I,d)-retractable, A,ν � φ. So A,µ � ∃x. α(x,y)∧φ.
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